
Tutorial

Implementing Brainfuck in COLA

Michael Haupt
Software Architecture Group

Hasso-Plattner-Institut, University of Potsdam, Germany

michael.haupt@hpi.uni-potsdam.de

1 Introduction

This document provides a brief and very technical introduction to the basics of imple-
menting programming languages using the COLA environment. To be able to focus on
the introduction of COLA rather than semantics details of the language under imple-
mentation, the brainfuck language was chosen for its simplicity. The brainfuck imple-
mentation presented here is most certainly less than optimal in terms of performance,
but then again, the latter is clearly not the core intention of this document.

The first section gives brief overviews of both COLA and brainfuck. Section 2 is the
main part, describing the brainfuck implementation in detail. The author hopes that the
reader will be able to pick up a great deal of interesting information about COLA while
working through the text. In section 3, a brief manual for running brainfuck programs
is given. Section 4 summarises the tutorial and discusses some possible extensions of the
presented implementation. The appendix contains both the complete source code of the
brainfuck implementation and the license.

The author will be happy to receive comments, suggestions for improvements, etc. by
e-mail.

1.1 COLA

COLA1 (combined object-lambda abstraction) is a programming platform centered on the
idea of building complex systems using minimal abstractions. It originates from ongo-
ing research on fundamental new computing technologies2,3 [1] at Viewpoints Research
Institute4.

1http://piumarta.com/software/cola/
2http://vpri.org/html/work/ifnct.htm
3http://vpri.org/mailman/listinfo/fonc
4http://vpri.org/

1

http://piumarta.com/software/cola/
http://vpri.org/ html/ work/ ifnct.htm
http://vpri.org/ mailman/ listinfo/ fonc
http://vpri.org/

Like the name suggests, COLA provides two kinds of abstraction. At the bottom of
the system, there lies a minimal object model—minimal in that it is the smallest possible
representation that allows for full dynamism, i. e., late binding and modification of virtual
method tables through message sending—providing object abstraction [4] that can be
used as the basis for programs using a prototype-based object-oriented programming
language. The language has a Smalltalk-like syntax.

One level higher, there is a layer providing functional abstraction. It also comes with
a programming language; this time, S-expressions [5] are used to represent programs. It
is important to note that, even though programs written in the function part of COLA
look much like Scheme code, their semantics are significantly different from Scheme. It
is healthy to adopt, and early so, a view on these S-expressions that regards them as a
convenient and easy-to-parse C AST representation.

COLA function part programs are compiled using a just-in-time compiler that per-
forms, for optimisation purposes, tree pattern matching on the ASTs prior to generating
native code, which is then executed. The entire function part of COLA is implemented
in terms of the underlying object part, and using the object-oriented language pertaining
to the latter.

From within the object part, it is easy to access the underlying C level, and from
programs written in the function part, it is easy to access the underlying object level.
In summary, the programming model made available at the level of the function part of
COLA is extremely powerful and provides a great degree of control to the programmer.

On top of the function part, PEGs (parsing expression grammars) [3] have been re-
alised. Using PEGs, it is easy to define language implementations in terms of a grammar
and corresponding actions associated with matching parts of grammar rules. The PEG
implementation in COLA has been used to provide the brainfuck implementation de-
scribed in Sec. 2; all necessary explanations will be given there.

1.2 Brainfuck

The brainfuck5,6 programming language is a minimalistic language. It actually imple-
ments a Turing machine [7] and is indeed Turing complete [2]7.

Brainfuck features an array of 30,000 cells, each of which contains an ASCII character.
Initially, all cells are initialised to 0. There is a pointer—henceforth called P—referencing
a given cell in the array. Initially, P references the leftmost cell (i. e., the one at the array
index 0).

A set of eight commands is used to write brainfuck programs. They are given in
Table 1. The six commands above the double horizontal line form the Turing complete
instruction set of brainfuck. The two below only exist to allow for side effects also known
as user interaction.

5http://esoteric.voxelperfect.net/wiki/Brainfuck
6http://en.wikipedia.org/wiki/Brainfuck
7The referenced paper does not prove Turing completeness for brainfuck, of course. It proves it for P ′′,

programs written in which, however, can be trivially transformed to brainfuck. P ′′ lacks input and
output capabilities, but otherwise uses a set of six symbols, just like brainfuck.

2

http://esoteric.voxelperfect.net/wiki/Brainfuck
http://en.wikipedia.org/wiki/Brainfuck

> increase P by 1
< decrease P by 1
+ increase the value of the cell referenced by P by 1
- decrease the value of the cell referenced by P by 1
[if the value of the cell referenced by P is 0, proceed after corresponding]
] proceed at corresponding [

. output the value of the cell referenced by P as ASCII value
, read one character and put its ASCII value into the cell referenced by P

Table 1: All brainfuck commands.

1 ++++++++++[>+++++++ >++++++++++ >+++ >+ < < < < -] >++. >+.+++++++..+++. >++. < <++++++++++++++

2 +.>.+++.------.--------.>+.>.

Listing 1: Hello world in brainfuck (without comments).

Brainfuck programs consist of sequences of these characters. The classic hello world
example looks like shown in Listing 18 when written in brainfuck.

All characters that do not correspond to a brainfuck command are, by definition,
ignored, so that it is possible to write nicely commented brainfuck programs, such as in
Listing 29.

Given the simplicity of the language, this text will not waste any more time on in-
troducing its subtle concepts. Instead, the brainfuck implementation in COLA will be
discussed at length.

8This listing was copied from the Wikipedia page on brainfuck (the URL was given above) as of 2007-
11-12 17:19 CET.

9This listing was copied from the same source as Listing 1. Comments were slightly abridged.

1 ++++++++++

2 [>+++++++ >++++++++++ >+++ >+ < < < < -] Initial loop to set up useful values in array

3 >++. Print ’H’

4 >+. Print ’e’

5 +++++++. Print ’l’

6 . Print ’l’

7 +++. Print ’o’

8 >++. Print ’ ’

9 < <+++++++++++++++. Print ’W’

10 >. Print ’o’

11 +++. Print ’r’

12 ------. Print ’l’

13 --------. Print ’d’

14 >+. Print ’!’

15 >. Print newline

Listing 2: Hello world in brainfuck.

3

2 Implementing Brainfuck in COLA

The complete source code of the brainfuck implementation is given in Appendix A. This
section will perform a complete walk-through by quoting and discussing, bit by bit,
pieces of the source.

The brainfuck implementation is written in the language provided for the function
part of COLA. It frequently accesses the object layer below, though, to achieve certain
things. It also makes use of the PEG implementation available for COLA. The file
containing the implementation is called brainfuck.peg.

At first sight, the source code is divided into three main sections, spanning lines 1–47,
48–85, and 86–100, respectively. This separation into three sections is typical of .peg
files. Each of the sections plays a certain role in the brainfuck implementation, and each
of them will be dealt with below in a dedicated subsection in detail.

In short, the first section is about setting up an environment for the language imple-
mentation. The second—and most important—contains the language definition and, so
to speak, implementation. The third section contains further code that is needed to get
the language implementation up and running.

2.1 Preliminaries

The preliminaries are included in between %{ and %} in lines 25 and 47, respectively.
They are copied verbatim to the output when the .peg file is processed.

As mentioned above, this section is for setting up an environment for the language
implementation to live in. Hence, you can find all kinds of definitions here.

Taking a closer look, the first two lines that contain somethling looking like code define
two names and bind them to the result of some import operation:

27 (define OrderedCollection (import "OrderedCollection "))

28 (define FileStream (import "FileStream "))

This is already the first encounter of an access from the function part of COLA to
its object part. Both OrderedCollection and FileStream are prototypes10 defined in
the underlying object library11. Each such prototype is, by default, not visible to the
function part, but can be made available by importing it. The import operation results
in a reference to the prototype object, which can be bound to a name using define.
In essence, these two lines make the two prototypes available to the function part and
accessible as objects henceforth.

Binding C functions to names is equally easy, as the following code demonstrates:
31 (define putchar (dlsym "putchar "))

32 (define getchar (dlsym "getchar "))

33 (define memset (dlsym "memset "))

10The object library is entirely prototype-based, so these are not classes. In everyday usage, they feel a
lot like classes, though, which is a matter of convenience.

11In a complete installation of COLA, the object library accessible from the function part resides, in the
form of .st files, in the directory function/objects.

4

The three well-known functions putchar(), getchar(), and memset() from the C stan-
dard library are bound via dlsym and thus made available as real functions. In the
subsequent program, a bit of code like (putchar 65) will output the letter A to stan-
dard output. This brief example should have shown you that accessing the C layer is
indeed very easy from within COLA programs.

After having bound some objects and functions, the implementation moves on to
defining the memory available to brainfuck programs:

36 (define mem -size 32768)

37 (define memory (malloc mem -size))

Here, mem-size is a constant denoting that this particular brainfuck implementation
boldly uses an array of 32 kB instead of only 30,000 bytes. That very array is allocated
using malloc and bound to the name memory.

For convenience, there also exists a function that relies on memset() to zero out the
entire array:

39 (define init -memory (lambda () (memset memory 0 mem -size)))

It is interesting to note that this single line of code actually defines a valid C function:
the result of compiling the above code with the COLA JIT compiler is a pointer to a
function adhering to the C ABI. Bearing in mind that the S-expressions used in COLA
programs represent actual C ASTs, it is trivial to map the above code to C source code:
void* init -memory () {

return memset(memory , 0, mem -size);

}

Of course, the two identifiers init-memory and mem-size do not conform to C syntax,
but the point should be clear.12

The brainfuck pointer P is defined and made to point to the beginning of the array
like this:

42 (define P memory)

The last two lines in the preliminaries section introduce several features of the COLA
function part that have not been introduced yet, namely syntax definitions and message
sends.

45 (syntax inc (lambda (node) ‘(set ,[node second] (+ ,[node second] 1))))

46 (syntax dec (lambda (node) ‘(set ,[node second] (- ,[node second] 1))))

At first sight, these two definitions look much like the definitions of ordinary functions,
like seen above for init-memory: there is a name that is bound to a lambda expres-
sion. Moreover, the functions seem to apply quasiquotation—using backticks (‘) for
quasiquoting and commas (,) for unquoting—as known from the Scheme programming
language [6]. In fact, the quasiquote semantics of the function part of COLA are the
same as in Scheme.

12One might argue that init-memory was not necessary at all, because the memory array could have
been allocated and filled with zeros using calloc(). The present approach was chosen to illustrate
the creation of C functions in Jolt.

5

The notable obvious differences to Scheme code are twofold: the two definitions of
inc and dec are not made using define, but syntax. Moreover, there appear square
brackets ([]) in the code, which is certainly not Scheme syntax.

The definitions are bound to their respective names using syntax to mark them as
syntax definitions. Roughly speaking, they can be regarded as a COLA equivalent to
macros (they are significantly more powerful, though—see below). Macros can be used
just like functions in code, only that they are evaluated immediately, instead of at run-
time, and that the results of their evaluation—usually a bit of AST—is inlined where
their “invocation” was found by the compiler. Taking this into account, it will be
immediately clear why inc and dec return quasiquoted ASTs: they return code to be
inserted instead of the macro applications.

Looking at the code, the lambdas each accept a single parameter called node. This
is a representation of the AST node currently being visited by the COLA function
part compiler. The node is an object to which messages can be sent—more precisely,
it is a SequenceableCollection13. Sending messages to objects is done using square
brackets. Each pair of square brackets encloses one message send in, roughly, Smalltalk
syntax. Nested message sends must be enclosed in nested square brackets, as will be
demonstrated in Sec. 2.3 below.

The four appearances of ,[node second] in the definitions of inc and dec all access
(and unquote) the second element of the node. Given that node represents the AST
node currently being visited by the compiler, the first element consequently is the name
of the macro currently being evaluated. The second and subsequent elements reference
AST parts passed as parameters to the macro application. Unquoting will lead to a
textual representation of that AST part to be inlined in the newly created AST.

In essence, an application of the inc macro, e. g., (inc q), will yield an AST snippet
looking just like this: (set q (+ q 1)). Analogously, (dec 42) will yield the obviously
nonsensical (set 42 (- 42 1)) which will lead to an error when evaluated.

It is important to note that calling syntax definitions “macros” is inaccurate. A syntax
definition is actually not only passed the single node argument that gives it access to the
AST, but a second argument usually called compiler, which was omitted for simplicity
in the example. The compiler argument is a reference to an object representing the
actual compiler as part of whose compilation process the syntax definition application is
met. Hence, syntax definitions can have far greater influence on the compilation process
than macros, which essentially just replace text with different text—syntax definitions
can immediately talk to the compiler and, for instance, influence the way it generates
native code.

2.2 Parsing and Compiling

As mentioned above, the second section of the brainfuck.peg file contains the most
important part: the definition of the language’s grammar and behaviour. Lines 51–84
make up the entire thing. Given that brainfuck is such a simple language, this should

13Again, see the function/objects directory of your COLA installation for the sources.

6

not come as a surprise.
The grammar is defined in a convenient way: a non-terminal name is given, followed

by an equals sign (=). After that, all production rules pertaining to the non-terminal are
given in what looks much like an EBNF notation. In fact, the usual symbols as found
in EBNF can be used to specify COLA PEG grammars: ? denotes an option, +, one or
more repetitions, and *, zero or more. Braces (()) are used to denote groups, and the
vertical bar (|) marks alternatives.

2.2.1 Rules for Terminal Symbols

The description of the brainfuck implementation will start at the end and move to the
front—this bottom-up approach is best suited to provide a good understanding of the
concepts at work and how they are used together. So, definitions of rules for all the
terminal symbols are considered first:

75 Forward = ’>’

76 Backward = ’<’

77 Increment = ’+’

78 Decrement = ’-’

79 Put = ’.’

80 Get = ’,’

81 While = ’[’

82 Wend = ’]’

83 BrainfuckSymbol = ; all of the above

84 Forward | Backward | Increment | Decrement | Put | Get | While | Wend

These lines define a dedicated non-terminal for each terminal symbol in brainfuck, and
another non-terminal that matches any brainfuck symbol. Terminal symbols are given
in single quotes (’’).

Before moving on, some clarification is advisable. Throughout this text, the brainfuck
implementation has always been called a brainfuck implementation so far. Deliberately
so: the true nature of the language implementation—interpreter or compiler?—should
not be given away until just now. In fact, the implementation utilises the COLA function
part capabilities of just-in-time compilation. This brainfuck implementation is not an
interpreter: the brainfuck programs passed to it are indeed compiled to native code
before they are executed.

2.2.2 Matching a Single Instruction

The next rule is already the one where the really interesting things happen. It matches
and processes a single brainfuck instruction:

65 Instruction = ((! BrainfuckSymbol) .)* ; exclude all "illegal" characters

66 (Forward { ‘(inc P) }

67 | Backward { ‘(dec P) }

68 | Increment { ‘(inc (char@ P)) }

69 | Decrement { ‘(dec (char@ P)) }

70 | Put { ‘(putchar (char@ P)) }

71 | Get { ‘(set (char@ P) (getchar)) }

72 | While body:Instructions Wend { ‘(while (!= 0 (char@ P)) ,@body) }

73)

7

Looking at the rule definition from a high level, there is an alternative for each brainfuck
symbol. The curly braces ({}) mark action parts of the grammar. Action parts are
accumulated during parsing when the rule parts they are associated with match, and they
are executed once the parser has finished parsing a document. In other words, whenever
a Forward symbol is matched whilst parsing some brainfuck input, the corresponding
action { ‘(inc P) } is noted for later execution. That way, the parser generates, while
parsing its input, an executable representation in terms of actions.

Each of the action parts contains a quasiquote expression. That is, these action parts
to not actually do something, instead they return quasiquoted AST parts. This is how
one can tell that the implementation actually first assembles a complete AST of the
brainfuck input. An “interpreting” implementation would not use quasiquotation in
these places; its action parts would immediately execute the logic associated with each
rule of the grammar. Apart from that, implementing an interpreter would actually be
more complicated than the present solution: parser input positions would have to be
memorised to be able to realise loops, and the parser would have to parse its input over
and over again, for each iteration.

Looking at the details of the Instruction rule, its structure becomes apparent. The
first line,

65 Instruction = ((! BrainfuckSymbol) .)* ; exclude all "illegal" characters

contains some code that facilitates the brainfuck implementation’s ignoring all non-
brainfuck characters in the input. The expression (!BrainfuckSymbol) is a condition
for the following dot (.). The dot matches any single character. The condition, in this
case, restricts . to match only those characters that are not brainfuck symbols. An
arbitrary number of these may be given, as denoted by the * attached to the code.

The rest of the Instruction rule,
66 (Forward { ‘(inc P) }

67 | Backward { ‘(dec P) }

68 | Increment { ‘(inc (char@ P)) }

69 | Decrement { ‘(dec (char@ P)) }

70 | Put { ‘(putchar (char@ P)) }

71 | Get { ‘(set (char@ P) (getchar)) }

72 | While body:Instructions Wend { ‘(while (!= 0 (char@ P)) ,@body) }

73)

defines a group of alternatives: for each brainfuck symbol, an alternative is given with
the corresponding AST-generating action part.

The ASTs generated for Forward and Backward apply the inc and dec macros ex-
plained above in Sec. 2.1 to the brainfuck array pointer P. Consequently, the code re-
turned from these rule parts will, when executed, increment or decrement P, correctly
implementing the language semantics.

The Increment and Decrement actions are supposed to alter the value of the brainfuck
array cell pointed to by P. This is achieved by applying the inc and dec macros to
(char@ P), which interprets P as a pointer to a C char and dereferences it14.

14The equivalent C code for (char@ P) is *P.

8

Put and Get are implemented in non-surprising ways, invoking the putchar and
getchar functions defined in the preliminaries section accordingly. For Get, the result
of the getchar application is stored in the location pointed to by P using set.

For the loop constructs While and Wend, the case is more interesting. The correspond-
ing rule part,

72 | While body:Instructions Wend { ‘(while (!= 0 (char@ P)) ,@body) }

matches an entire “loop”, starting with While and ending with Wend, with a number
of instructions in between. This rule part refers to the Instructions rule, which will
be discussed below. For now, it is important to know that the result of matching the
Instructions rule—an AST—is bound to a variable called body.

The action part for loops returns an AST making use of the while construct available
in the function part of COLA. The loop condition, adhering to the brainfuck language
semantics, checks whether the value in the array cell pointed to by P is zero. The loop
body is simply the AST returned from the matching of the Instructions rule. It is
inlined into the generated AST by unquoting it to a textual representation using ,@.
Other than unquoting via a single comma (,), ,@ expects a list of elements to be inlined
in a quasiquote expression. Given that body is indeed a list of ASTs, this certainly
makes sense.

2.2.3 Matching Instruction Sequences and Building ASTs

The Instructions rule was already mentioned above:
60 Instructions =

61 insns:Instruction { (set insns [OrderedCollection with: insns]) }

62 (ins:Instruction { [insns add: ins] })*

63 { insns }

While the Instruction rule matches a single brainfuck instruction and generates a
corresponding AST representing its behaviour, the Instructions rule matches an entire
sequence of brainfuck instructions and returns the corresponding AST for it.

To achieve this, it makes use of the Instruction rule and adds the ASTs returned
from matching single instructions to an OrderedCollection, which is finally returned:

62 (ins:Instruction { [insns add: ins] })*

63 { insns }

The first of these two lines matches, zero or more times, a single instruction, binds the
resulting AST to the variable ins, and, in the corresponding action part, adds the AST
contained in ins to the OrderedCollection named insns. This latter operation is done
at the object level: the add: message is sent to insns with the parameter ins in square
brackets. The second line just contains an action part that is executed when matching
single instructions is finished; it merely returns the insns collection.

This is how ASTs are assembled. To explain how the OrderedCollection containing
the assembled AST comes into play, it is important to point out how the first part of
the Instructions rule is implemented:

61 insns:Instruction { (set insns [OrderedCollection with: insns]) }

9

A single instruction is matched, and the corresponding AST is bound to insns. Later
on in this rule, insns is expected to contain an OrderedCollection, which is achieved
by the action part. It creates the desired OrderedCollection15, fills it with the AST
parts that are already there—at this point in time, they are contained in insns—and
finally binds the newly created OrderedCollection to insns.

This is indeed a dirty trick, but the way COLA PEG grammars are formulated requires
it to be applied this way—they do not support local variables yet. There is also a
consequence for the semantics of the language: each program and loop body will consist
of at least one instruction.

2.2.4 Parsing and Executing a Program

The final rule of the brainfuck grammar is the Program rule. It is the first one given in
the grammar section of the brainfuck.peg file, which implies that it is considered to
be the starting rule of any brainfuck program.

The rule does not do much more than passing control to the Instructions rule—a
program is a sequence of instructions, after all—and binding the resulting AST to the
prg variable:

51 Program =

52 prg:Instructions {

53 (let ((bf-ast ‘(let () ,@prg)))

54 (printf "AST of the Brainfuck program :\n")

55 [StdOut println: bf -ast]

56 (printf "Running now ...\n")

57 [bf -ast eval])

58 }

The interesting part of the Program rule is its action part, which consists of a single let
expression. The let defines bf-ast:

53 (let ((bf-ast ‘(let () ,@prg)))

The same idiom as observed above for brainfuck loop constructs is used here again: the
AST resulting from the Instructions rule is spliced into a newly created expression.
In this case, it is another let expression that does not bind any further names. A let
expression of the form (let () ...) corresponds to a C block occurring somewhere in
a method: { ... }. In a nutshell, the resulting value of bf-ast is an executable AST.

The four remaining lines of the rule’s action part,
54 (printf "AST of the Brainfuck program :\n")

55 [StdOut println: bf -ast]

56 (printf "Running now ...\n")

57 [bf -ast eval])

mostly consist of convenience output. In fact, only the fourth line, where the eval
message is sent to the bf-ast object, is actually required. For debugging purposes, the
brainfuck implementation outputs the entire AST before it executes it.

15This is done by sending the new message to the OrderedCollection prototype.

10

2.3 Starting Up the Implementation

The final part of the brainfuck.peg file begins after the %% delimiter. Like for the
preliminaries section, the contents of this last section are copied verbatim to the file
generated when processing brainfuck.peg. This final section contains code that is used
to start up the brainfuck implementation.

First of all, the brainfuck memory array is initialised to contain only zeroes:
90 (init -memory)

This is done by simply invoking the init-memory function that was defined in the
preliminaries section (cf. Sec. 2.1).

The next few lines,
92 (let ((bf-input

93 (if [[OS arguments] notEmpty]

94 (yy -new [FileStream on: [File open: [[OS arguments] removeLast]]])

95 (yy -new [FileStream on: StdIn]))))

96 (or

97 (yy -parse bf-input)

98 (printf "Syntax error .\n")))

assemble an input stream for the brainfuck program to be parsed and pass it to the
language implementation. The let expression binding bf-input handles command line
arguments. The code [[OS arguments] notEmpty] accesses the object level16 to deter-
mine whether any command line argument was given at all. If so, bf-input is bound to
an input source corresponding to that file. Otherwise, brainfuck code is expected to be
entered via stdin.

The ensuing or expression exploits the fact that parameters to logical disjunctions are
lazily evaluated. If parsing—achieved by passing bf-input to yy-parse—fails, an error
message is output.

Finally,
100 (printf "\n")

prints a newline character to flush output and to return cleanly to the operating system
prompt.

3 Compiling and Running the Implementation

In the following, it is assumed that the brainfuck.peg file resides, along with some
brainfuck program files with the suffix .bf, in the function/examples/peg directory
of a complete COLA checkout. The version of COLA the presented implementation is
tested on is SVN revision 350; the author does not guarantee it to work properly on any
other revision.

To generate an actual COLA function part program out of the .peg file, it is necessary
to preprocess it. This is done using the following command line:
$COLAF boot.k peg.k -o brainfuck.peg.k brainfuck.peg

16This is an example of nested square brackets use to handle multiple message sends.

11

where $COLAF references the COLA function part executable17.
This command line will start up the COLA function part and read, in the given order,

boot.k, which will set up a complete COLA environment, and peg.k, which defines the
PEG processor. Finally, the name of the output file for the brainfuck implementation—
brainfuck.peg.k—and the input file it is to be generated from are given.

To run a brainfuck program, e. g., a file hello.bf containing the hello world code
shown in Sec. 1.2, the following command line is to be given:
$COLAF boot.k brainfuck.peg.k hello.bf

This will, again, set up a complete COLA environment before loading the brainfuck
implementation, which will then read and execute hello.bf.

4 Summary

This tutorial has demonstrated how to implement a simple programming language in
COLA using the available PEG implementation. The brainfuck programming language
was chosen for its simplicity, which allowed for concentrating on the features of COLA
instead of language features.

Various improvements are conceivable. For instance, it could be interesting to realise
the brainfuck implementation as an interpreter that executes the language semantics
as parsing goes along, instead of generating a complete AST of the input program and
passing that to the just-in-time compiler.

It would also be nice to have an actual brainfuck compiler generating binary files
that could be executed independently. COLA, in its current version, lacks the ability
to serialise generated native code to files. This feature is planned for the near future,
however.

Acknowledgments

The author is grateful to Ian Piumarta, who made many important remarks that helped
improving this document’s accuracy, and for various hints on COLA details that were
made by Hans Schippers—they really helped getting the brainfuck implementation run-
ning. Thanks also go to Robert Feldt for his suggestions for improvement.

A Complete Source Code

1 ;;; brainfuck implementation using the function part of COLA

2

3 ;;; License (MIT License)

4 ; Copyright (c) 2007 -2008 Michael Haupt

5 ; michael.haupt@hpi.uni -potsdam.de , http ://www.hpi.uni -potsdam.de/swa/

6 ;

7 ; Permission is hereby granted , free of charge , to any person obtaining a copy

8 ; of this software and associated documentation files (the "Software"), to deal

17For the COLA SVN revision 350, this executable is function/jolt-burg/main.

12

9 ; in the Software without restriction , including without limitation the rights

10 ; to use , copy , modify , merge , publish , distribute , sublicense , and/or sell

11 ; copies of the Software , and to permit persons to whom the Software is

12 ; furnished to do so, subject to the following conditions:

13 ;

14 ; The above copyright notice and this permission notice shall be included in

15 ; all copies or substantial portions of the Software.

16 ;

17 ; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS OR

18 ; IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,

19 ; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

20 ; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER

21 ; LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,

22 ; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

23 ; THE SOFTWARE.

24

25 %{

26 ;;; bind library objects

27 (define OrderedCollection (import "OrderedCollection "))

28 (define FileStream (import "FileStream "))

29

30 ;;; bind library functions

31 (define putchar (dlsym "putchar "))

32 (define getchar (dlsym "getchar "))

33 (define memset (dlsym "memset "))

34

35 ;;; the memory

36 (define mem -size 32768)

37 (define memory (malloc mem -size))

38

39 (define init -memory (lambda () (memset memory 0 mem -size)))

40

41 ;;; the pointer

42 (define P memory)

43

44 ;;; convenience functions

45 (syntax inc (lambda (node) ‘(set ,[node second] (+ ,[node second] 1))))

46 (syntax dec (lambda (node) ‘(set ,[node second] (- ,[node second] 1))))

47 %}

48

49 ;;; grammar and language implementation

50

51 Program =

52 prg:Instructions {

53 (let ((bf-ast ‘(let () ,@prg)))

54 (printf "AST of the Brainfuck program :\n")

55 [StdOut println: bf -ast]

56 (printf "Running now ...\n")

57 [bf -ast eval])

58 }

59

60 Instructions =

61 insns:Instruction { (set insns [OrderedCollection with: insns]) }

62 (ins:Instruction { [insns add: ins] })*

63 { insns }

64

65 Instruction = ((! BrainfuckSymbol) .)* ; exclude all "illegal" characters

66 (Forward { ‘(inc P) }

67 | Backward { ‘(dec P) }

68 | Increment { ‘(inc (char@ P)) }

69 | Decrement { ‘(dec (char@ P)) }

70 | Put { ‘(putchar (char@ P)) }

13

71 | Get { ‘(set (char@ P) (getchar)) }

72 | While body:Instructions Wend { ‘(while (!= 0 (char@ P)) ,@body) }

73)

74

75 Forward = ’>’

76 Backward = ’<’

77 Increment = ’+’

78 Decrement = ’-’

79 Put = ’.’

80 Get = ’,’

81 While = ’[’

82 Wend = ’]’

83 BrainfuckSymbol = ; all of the above

84 Forward | Backward | Increment | Decrement | Put | Get | While | Wend

85

86 %%

87

88 ;;; start up brainfuck

89

90 (init -memory)

91

92 (let ((bf-input

93 (if [[OS arguments] notEmpty]

94 (yy -new [FileStream on: [File open: [[OS arguments] removeLast]]])

95 (yy -new [FileStream on: StdIn]))))

96 (or

97 (yy -parse bf-input)

98 (printf "Syntax error .\n")))

99

100 (printf "\n")

B License

License (MIT License)
Copyright (c) 2007-2008 Michael Haupt
michael.haupt@hpi.uni-potsdam.de, http://www.hpi.uni-potsdam.de/swa/

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

14

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

References

[1] A. Kay and D. Ingalls and Y. Ohshima and I. Piumarta and A. Raab. Proposal to
NSF. Granted on August 31, 2006. Technical Report VPRI Research Note RN-2006-
002, Viewpoints Research Institute, 2006.

[2] C. Böhm and G. Jacopini. Flow diagrams, turing machines and languages with only
two formation rules. Commun. ACM, 9(5):366–371, 1966.

[3] B. Ford. Parsing expression grammars: a recognition-based syntactic foundation.
SIGPLAN Not., 39(1):111–122, 2004.

[4] I. Piumarta and A. Warth. Open Reusable Object Models. Technical Report VPRI
Research Note RN-2006-003-a, Viewpoints Research Institute, 2006.

[5] J. McCarthy. Recursive functions of symbolic expressions and their computation by
machine, part i. Commun. ACM, 3(4):184–195, 1960.

[6] N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Hal-
stead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J.
Rozas, Jr. G. L. Steele, G. J. Sussman, M. Wand, and H. Abelson. Revised5 report
on the algorithmic language scheme. SIGPLAN Not., 33(9):26–76, 1998.

[7] A. M. Turing. On Computable Numbers, With an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42), 1936.

15

	Introduction
	COLA
	Brainfuck

	Implementing Brainfuck in COLA
	Preliminaries
	Parsing and Compiling
	Rules for Terminal Symbols
	Matching a Single Instruction
	Matching Instruction Sequences and Building ASTs
	Parsing and Executing a Program

	Starting Up the Implementation

	Compiling and Running the Implementation
	Summary
	Complete Source Code
	License

