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1 Introduction

This document provides a brief and very technical introduction to the basics of imple-
menting programming languages using the COLA (combined object-lambda abstraction)
environment. To be able to focus on the introduction of COLA rather than the semantic
details of the language under implementation, the brainfuck language was chosen for its
simplicity. The brainfuck implementation presented here is most certainly less than op-
timal in terms of performance, but then again, the latter is clearly not the core intention
of this document.

The first section gives brief overviews of both COLA and brainfuck. Section 2 is
the main part, describing the brainfuck implementation in detail. This version of the
tutorial uses version 2 of the COLA environment, which allows for more concise language
implementations that also fit more organically into the overall environment. The author
hopes that the reader will be able to pick up a great deal of interesting information
about COLA while working through the text. In section 3, a brief manual for running
brainfuck programs is given. Detailed information about COLA grammars and parsers
is given in section 4. Section 5 summarises the tutorial and discusses some possible
extensions of the presented implementation. The appendix contains the complete source
code of the brainfuck implementation.

The author will be happy to receive comments, suggestions for improvements, etc., by
e-mail.
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1.1 COLA

COLA1 is a programming platform centered on the idea of building complex systems
using minimal abstractions. It originates from ongoing research on fundamental new
computing technologies2,3 [1] at Viewpoints Research Institute4.

Like the name suggests, COLA provides two kinds of abstraction. On the one hand,
there is a minimal object model—minimal in that it is the smallest possible representa-
tion that allows for full dynamism, i. e., late binding and modification of virtual method
tables through message sending—providing object abstraction [4] that can be used as the
basis for programs using a prototype-based object-oriented programming language. The
language has a Smalltalk-like syntax, and it is statically compiled. It provides seamless
access to the “C level”, thus supporting the implementation of primitives that cannot
be expressed otherwise.

On the other hand, there is an environment providing functional abstraction. It also
comes with a programming language; here, S-expressions [5] are used to represent pro-
grams. It is important to note that, even though programs written in the function part
of COLA look much like Scheme [6] code, their semantics are significantly different from
Scheme. It is healthy to adopt, and early so, a view on these S-expressions that regards
them as a convenient and easy-to-parse C AST representation.

COLA function part programs are compiled using a just-in-time compiler that per-
forms, for optimisation purposes, tree pattern matching on the ASTs prior to generating
native code, which is then executed. The entire function part of COLA is implemented
in the prototype-based object language mentioned above. From programs written in
the function part, the object part can be accessed easily; thus, the programming model
available here is very powerful, allowing the seamless integration of both abstractions.

The two parts of COLA are actually adjacent. The object part allows for concisely
defining data structures in terms of objects and messages. The function part supports
the definition of first-class behaviour through lambda abstraction.

An entirely malleable parser lies at the heart of the COLA function part. It can
be instructed on the fly to accept code written in any language for which a grammar
has been defined. Grammars can be defined in the function part itself by means of
an implementation of PEGs (parsing expression grammars) [3]. Using PEGs, it is easy
to define language implementations in terms of a grammar and corresponding actions
associated with matching parts of grammar rules. The PEG implementation in COLA
has been used to provide the brainfuck implementation described in section 2. All
explanations necessary for understanding the implementation will be given there, and
section 4 will give a more detailed introduction to the concepts at work.

1http://piumarta.com/software/cola/
2http://vpri.org/html/work/ifnct.htm
3http://vpri.org/mailman/listinfo/fonc
4http://vpri.org/
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> increase P by 1
< decrease P by 1
+ increase the value of the cell referenced by P by 1
- decrease the value of the cell referenced by P by 1
[ if the value of the cell referenced by P is 0, proceed after corresponding ]
] proceed at corresponding [

. output the value of the cell referenced by P as ASCII value
, read one character and put its ASCII value into the cell referenced by P

Table 1: All brainfuck commands.

1 ++++++++++[ >+++++++ >++++++++++ >+++ >+ < < < < -] >++. >+.+++++++..+++. >++. < <++++++++++++++

2 +.>.+++.------.--------.>+.>.

Listing 1: Hello world in brainfuck (without comments).

1.2 Brainfuck

The brainfuck5,6 programming language is a minimalistic language. It actually imple-
ments a Turing machine [8, 7] and is indeed Turing complete [2]7.

Brainfuck features an array of 30,000 cells, each of which contains an ASCII character.
Initially, all cells are initialised to 0. There is a pointer—henceforth called P—referencing
a given cell in the array. Initially, P references the leftmost cell (i. e., the one at the array
index 0).

A set of eight commands is used to write brainfuck programs. They are given in
Table 1. The six commands above the double horizontal line form the Turing complete
instruction set of brainfuck. The two below only exist to allow for side effects also known
as user interaction.

Brainfuck programs consist of sequences of these characters. The classic hello world
example looks like shown in Listing 18 when written in brainfuck.

All characters that do not correspond to a brainfuck command are, by definition,
ignored, so that it is possible to write nicely commented brainfuck programs, such as in
Listing 29.

Given the simplicity of the language, this text will not waste any more time on in-
troducing its subtle concepts. Instead, the brainfuck implementation in COLA will be
discussed at length.

5http://esoteric.voxelperfect.net/wiki/Brainfuck
6http://en.wikipedia.org/wiki/Brainfuck
7The referenced paper does not prove Turing completeness for brainfuck, of course. It proves it for P ′′,

programs written in which, however, can be trivially transformed to brainfuck. P ′′ lacks input and
output capabilities, but otherwise uses a set of six symbols, just like brainfuck.

8This listing was copied from the Wikipedia page on brainfuck (the URL was given above) as of 2009-
03-18 16:38 CET.

9This listing was copied from the same source as Listing 1. Comments were slightly abridged.
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1 ++++++++++ initialises cell zero to 10

2 [

3 >+++++++>++++++++++ >+++>+<< <<-

4 ] this loop sets the next four cells to 70/100/30/10

5 >++. print ’H’

6 >+. print ’e’

7 +++++++. ’l’

8 . ’l’

9 +++. ’o’

10 >++. space

11 < <+++++++++++++++. ’W’

12 >. ’o’

13 +++. ’r’

14 ------. ’l’

15 --------. ’d’

16 >+. ’!’

17 >. newline

Listing 2: Hello world in brainfuck.

2 Implementing Brainfuck in COLA

The complete source code of the brainfuck implementation is given in Appendix A. This
section will perform a complete walk-through by quoting and discussing, bit by bit,
pieces of the source.

The brainfuck implementation is written in the language provided for the function part
of COLA. It occasionally accesses the adjacent object environment, though, to achieve
certain things. It also makes use of the PEG implementation available for COLA. The
file containing the implementation is called brainfuck.k.

At first sight, the source code is divided into two main sections (ignoring the license),
spanning lines 27–41 and 42–75, respectively. This separation into two sections is typical
of such language implementation files. Each of the sections plays a certain role in the
brainfuck implementation, and each of them will be dealt with below in a dedicated
subsection in detail.

In short, the first section is about setting up an environment for the language imple-
mentation. The second—and most important—contains the language definition and, so
to speak, implementation.

2.1 Preliminaries

As mentioned above, this section is for setting up an environment for the language
implementation to live in. Hence, you can find all kinds of definitions here.

Taking a closer look, the first two lines that contain somethling looking like code define
two names and bind them to the result of some operation:

28 (define putchar (dlsym "putchar "))

29 (define getchar (dlsym "getchar "))

The two well-known functions putchar() and getchar() from the C standard library
are bound via dlsym and thus made available as real functions. In the subsequent
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program, a bit of code like (putchar 65) will output the letter A to standard output.
Note that dlsym is predefined in the COLA function environment and provides a basic
wrapper to the standard library function of the same name.

It is important to note that the names bound to values by the code mentioned above
indeed represent valid C function pointers. It is equally easy to define C functions in
the COLA function environment. The code
(define myfunc (lambda (x) (printf "%d\n" (+ x 23))))

corresponds to the C function
int myfunc(int x) {

return printf ("%d\n", x + 23);

}

with the notable difference that the former is dynamically compiled as the COLA parser
encounters it.

Having bound the putchar and getchar functions, the implementation moves on to
defining the memory available to brainfuck programs:

32 (define mem -size 32768)

33 (define memory (calloc mem -size 1))

Here, mem-size is a constant denoting that this particular brainfuck implementation
boldly uses an array of 32 kB instead of only 30,000 bytes. That very array is allocated
using calloc and bound to the name memory. The calloc invocation initialises all array
elements to zero.

The brainfuck pointer P is defined and made to point to the beginning of the array
like this:

36 (define P memory)

The last two lines in the preliminaries section introduce several features of the COLA
function part that have not been introduced yet, namely syntax definitions and message
sends.

39 (syntax inc (lambda (node compiler) ‘(set ,[node second] (+ ,[node second] 1))))

40 (syntax dec (lambda (node compiler) ‘(set ,[node second] (- ,[node second] 1))))

At first sight, these two definitions look much like the definitions of ordinary functions,
like seen above for myfunc: there is a name that is bound to a lambda expression. More-
over, the functions seem to apply quasiquotation—using backticks (‘) for quasiquoting
and commas (,) for unquoting—as known from the Scheme programming language [6].
In fact, the quasiquote semantics of the function part of COLA are the same as in
Scheme.10

The notable obvious differences to Scheme code are twofold: the two definitions of
inc and dec are not made using define, but syntax. Moreover, there appear square
brackets ([]) in the code, which is certainly not Scheme syntax.

10One might, and quite rightfully so, get the idea that the COLA environment—supporting S-expression
C ASTs, quasiquotation and dynamic compilation—is a very, very sophisticated C preprocessor and
compiler.
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The definitions are bound to their respective names using syntax to mark them as
syntax definitions. Roughly speaking, they can be regarded as a COLA equivalent to
macros (they are significantly more powerful, though—see below). Macros can be used
just like functions in code, only that they are evaluated immediately, instead of at run-
time, and that the results of their evaluation—usually a bit of AST—is inlined where
their “invocation” was found by the compiler. Taking this into account, it will be
immediately clear why inc and dec return quasiquoted ASTs: they return code to be
inserted instead of the macro applications.

Looking at the code, the lambdas each accept two parameters called node and compiler.
The node parameter is a representation of the AST node currently being visited by the
COLA function part compiler. It is an object to which messages can be sent—more
precisely, it is a SequenceableCollection11. Sending messages to objects is done using
square brackets. Each pair of square brackets encloses one message send in, roughly,
Smalltalk syntax. Nested message sends must be enclosed in nested square brackets.

The four appearances of ,[node second] in the definitions of inc and dec all access
(and unquote) the second element of the node. Given that node represents the AST
node currently being visited by the compiler, the first element consequently is the name
of the macro currently being evaluated. The second and subsequent elements reference
AST parts passed as parameters to the macro application. Unquoting will lead to a
textual representation of that AST part to be inlined in the newly created AST.

In essence, an application of the inc macro, e. g., (inc q), will yield an AST snippet
looking just like this: (set q (+ q 1)). Analogously, (dec 42) will yield the obviously
nonsensical (set 42 (- 42 1)) which will lead to an error when compiled.

It is important to note that calling syntax definitions “macros” is inaccurate, which has
something to do with the presence of the second argument called compiler, which is not
used in this example. The compiler argument is a reference to an object representing the
actual compiler as part of whose compilation process the syntax definition application is
met. Hence, syntax definitions can have far greater influence on the compilation process
than macros, which essentially just replace text with different text—syntax definitions
can immediately talk to the compiler and, for instance, influence the way it generates
native code.

2.2 Parsing and Compiling

As mentioned above, the second section of the brainfuck.k file contains the most im-
portant part: the definition of the language’s grammar and behaviour. Lines 44–75
make up the entire thing. Given that brainfuck is such a simple language, this should
not come as a surprise.

The grammar is defined in a convenient way: a non-terminal name is given, followed
by an equals sign (=). After that, all production rules pertaining to the non-terminal are
given in what looks much like an EBNF notation. In fact, the usual symbols as found
in EBNF can be used to specify COLA PEG grammars: ? denotes an option, +, one or

11In a complete installation of COLA, the object library accessible from the function part resides, in the
form of .st files, in the directory function/objects.
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more repetitions, and *, zero or more. Braces (()) are used to denote groups, and the
vertical bar (|) marks alternatives. There are also some special elements that will be
explained below.

Note that the entire grammar definition is written in the following form (heavily
abbreviated and abstracted):
[ ’{ ... definitions ... } name: grammar -name ]

This is nothing but a COLA message send (note the square brackets) where the name:
message is sent with the name of the grammar as parameter. The name is quoted; this
turns it into a symbol (i. e., a unique string). The grammar itself is also a quoted object
represented by a set of definitions in curly braces. Details about these structures are
given below in section 4.

2.2.1 Rules for Terminal Symbols

A bottom-up approach is best suited to provide a good understanding of the concepts at
work in the brainfuck implemenattion and how they are used together. So, definitions
of rules for all the terminal symbols are considered first:

45 forward = ’>’

46 backward = ’<’

47 increment = ’+’

48 decrement = ’-’

49 put = ’.’

50 get = ’,’

51 while = ’[’

52 wend = ’]’

53

54 bfsymbol =

55 forward | backward | increment | decrement | put | get | while | wend

These lines define a dedicated non-terminal for each terminal symbol in brainfuck, and
another non-terminal that matches any brainfuck symbol. Terminal symbols are given
in single quotes (’’).

Before moving on, some clarification is advisable. Throughout this text, the brainfuck
implementation has always been called a brainfuck implementation so far. Deliberately
so: the true nature of the language implementation—interpreter or compiler?—should
not be given away until just now. In fact, the implementation utilises the COLA function
part capabilities of just-in-time compilation. This brainfuck implementation is not an
interpreter: the brainfuck programs passed to it are indeed compiled to native code
before they are executed.

2.2.2 White Space

Before we can move on to processing brainfuck instructions, we need to clarify what
white space is in a brainfuck program—recall that any character that is not one of the
symbols listed in Table 1 is to be ignored by the implementation. So, in essence, anything
that is not a brainfuck terminal symbol is considered white space:

57 _ = (! bfsymbol .)*

7



The white space rule is given the name _. This is just a useful convention: that way,
the name of the white space rule is quite unobtrusive.

The way the white space rule is constructed is more interesting than its name. Its
purpose is to consume any sequence of zero or more characters that are not brainfuck
symbols, i. e., input that is not consumed by the bfsymbol rule. This is achieved in the
following way. The sequence is indicated by the star (*) attached to the entire expression.
The dot (.) consumes a single character. In this special case, however, it only does so
if a certain condition holds, which is expressed by the !bfsymbol expression. It applies
the ! (negation) predicate to the bfsymbol rule; the expression succeeds if bfsymbol
does not match.

2.2.3 Matching a Single Instruction

The next rule is already the one where the really interesting things happen. It matches
and processes a single brainfuck instruction:

59 instruction =

60 _

61 ( forward <- ’(inc P)

62 | backward <- ’(dec P)

63 | increment <- ’(inc (char@ P))

64 | decrement <- ’(dec (char@ P))

65 | put <- ’(putchar (char@ P))

66 | get <- ’(set (char@ P) (getchar ))

67 | while _ instructions ->0 _ wend <- ‘(while (!= 0 (char@ P)) ,[self @ ’0])

68 )

Looking at the rule definition from a high level, there is an alternative for each brainfuck
symbol. The parts after left arrows (<-) are action parts of the grammar. Action
parts are accumulated during parsing when the rule parts they are associated with
match, and they are executed once the parser has finished parsing a document. In other
words, whenever a forward symbol is matched whilst parsing some brainfuck input,
the corresponding action ’(inc P) is noted for later execution. That way, the parser
generates, while parsing its input, an executable representation in terms of actions.

Each of the action parts contains a quasiquote expression. That is, these action parts
do not actually do anything, instead they return quasiquoted AST parts. This is how
one can tell that the implementation actually first assembles a complete AST of the
brainfuck input. An “interpreting” implementation would not use quasiquotation in
these places; its action parts would immediately execute the logic associated with each
rule of the grammar. Apart from that, implementing an interpreter would actually be
more complicated than the present solution: parser input positions would have to be
memorised to be able to realise loops, and the parser would have to parse its input over
and over again, for each iteration.

Looking at the details of the instruction rule, its structure becomes apparent. The
first line after the rule name,

59 instruction =

60 _
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consumes white space. Any occurrence of a brainfuck symbol may be preceded by white
space. The rest of the instruction rule,

61 ( forward <- ’(inc P)

62 | backward <- ’(dec P)

63 | increment <- ’(inc (char@ P))

64 | decrement <- ’(dec (char@ P))

65 | put <- ’(putchar (char@ P))

66 | get <- ’(set (char@ P) (getchar ))

67 | while _ instructions ->0 _ wend <- ‘(while (!= 0 (char@ P)) ,[self @ ’0])

68 )

defines a group of alternatives: for each brainfuck symbol, an alternative is given with
the corresponding AST-generating action part.

The ASTs generated for forward and backward apply the inc and dec macros ex-
plained above in section 2.1 to the brainfuck array pointer P. Consequently, the code
returned from these rule parts will, when executed, increment or decrement P, correctly
implementing the language semantics.

The increment and decrement actions are supposed to alter the value of the brainfuck
array cell pointed to by P. This is achieved by applying the inc and dec macros to
(char@ P), which interprets P as a pointer to a C char and dereferences it12.

The put and get symbols are handled in non-surprising ways, invoking the putchar
and getchar functions defined in the preliminaries section accordingly. For get, the
result of the getchar application is stored in the location pointed to by P using set.

For the loop constructs while and wend, the case is more interesting. The correspond-
ing rule part,

67 | while _ instructions ->0 _ wend <- ‘(while (!= 0 (char@ P)) ,[self @ ’0])

matches an entire “loop”, starting with while and ending with wend, with a num-
ber of instructions (and possible white space) in between. This rule part refers to the
instructions rule, which will be discussed below.

The parser maintains internal storage attached to the rule it currently evaluates. This
“stack frame” can be accessed by index, starting from 0. Elements of a rule can store
whatever is the result of their matching in these locations. The result of matching the
instructions rule—an AST—is stored in parser “stack frame” at index 0, which is
achieved by the -> construct.

The action part for loops returns an AST making use of the while construct available
in the function part of COLA. The loop condition, adhering to the brainfuck language
semantics, checks whether the value in the array cell pointed to by P is zero. The loop
body is simply the AST returned from the matching of the instructions rule. It is
inlined into the generated AST by unquoting it.

The argument to the unquote operation is interesting: [self @ ’0] is a message send.
The receiver, self, is the current parser, which is sent the dereferencing message @. This
realises an access to the parser’s internal storage associated with the active rule, in this
case, at index 013, and so retrieves the result of matching the instructions rule (see
12The equivalent C code for (char@ P) is *((char*)P).
13The number 0 is quoted (’0) to make it available as an object—message sends can only handle objects

as both receivers and parameters.
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above).

2.2.4 Matching Instruction Sequences and Building ASTs

The instructions rule was already mentioned above:
70 instructions =

71 instruction*->0 <- ‘(let () ,@[self @ ’0])

While the instruction rule matches a single brainfuck instruction and returns a corre-
sponding AST representing its behaviour, the instructions rule returns a sequence of
ASTs for single instructions.

To achieve this, it makes use of the instruction rule, which it accepts multiple times.
The result of these multiple matches is a sequence of ASTs14, which is stored at index 0
in the parse node’s internal storage. The AST returned from the instructions rule is
a let expression (corresponding to a block in curly braces in C) containing all the AST
bits generated for the matched expressions. The unquote syntax is different from above;
,@ unquotes a collection of elements and textually inlines them in the location where
unquoting takes place.

2.2.5 Parsing and Executing a Program

The final rule of the brainfuck grammar is the program rule. When executing a brainfuck
program, this rule is to be taken as the starting rule for the parser. The rule does not
do much more than pass control to the instructions rule—a program is a sequence of
instructions, after all—and consuming all remaining white space:

73 program =

74 instructions _ <- (let () [result eval] (printf "\n"))

The interesting part of the program rule is its action part, which consists of a single
let expression—not a quoted or quasiquoted AST, which means that this action part
is executed and its value returned. The result of parsing an entire program is implicitly
available in the result object15, which is sent the eval message. This triggers dynamic
compilation of the entire AST and executes the resulting native code immediately.

The final instruction in the rule’s action part just prints a newline to clean up the
console.

3 Running Brainfuck Programs

In the following, it is assumed that the brainfuck.k file resides, along with some brain-
fuck program files with the suffix .bf, in the function/examples2/brainfuck directory
of a complete COLA checkout. The version of COLA the presented implementation is

14The three EBNF operators *, +, and ? return sequences of ASTs, which may be empty in case *

matches zero times or ? does not match at all.
15This object can also be sent the print message, which will dump the entire AST to stdout. Just give

it a try.
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tested on is SVN revision 646; the author does not guarantee it to work properly on any
other revision.

To run a brainfuck program, e. g., a file hello.bf containing the hello world code
shown in section 1.2, the following command line is to be given:
$COLA2/main $COLA2/boot.k brainfuck.k hello.bf

where $COLA2 references the directory where version 2 of the COLA function environment
resides16.

This command line will start up the COLA function part and read, in the given order,
boot.k, which will set up a complete COLA environment, and brainfuck.k, which
contains the brainfuck implementation. Finally, hello.bf will be read and executed.

The COLA parser needs to be instructed to switch to a different input language as
defined by some particular grammar. In the case of the brainfuck grammar, whose name
is brainfuck, the command to switch is { brainfuck-program }. All files containing
brainfuck programs must begin with a line containing this command. The rationale
behind this will be described in the next section.

4 COLA Grammars and Parsers

This section gives a more thorough introduction to the inner workings of COLA gram-
mars and parsers. Both are represented by objects and are thus available as first-class
entities in the COLA environment. For grammars, represented by Grammar objects,
there is a special syntactic form—they are written down in curly braces as a set of rule
definitions with, possibly, action parts. Evaluating a Grammar will yield a Parser object,
which applies the grammar’s rules to input passed to it.

There are four things to consider, which will be dealt with below, namely (1) the
syntactic form that generates a Grammar object; (2) the protocol understood by Grammar
objects; (3) evaluating a Grammar object to construct a Parser object; and (4) the side-
effects of constructing a Parser object.

4.1 Grammar Literals

Recall the abstracted example for a “language definition” given in section 2.2:
[ ’{ ... definitions ... } name: ’grammar -name ]

The part that actually defines the grammarthen the syntactic form of a grammar defi-
nition is { ... definitions ... }, which is the special syntax in COLA to represent
Grammar objects.
Grammar objects have a useful protocol, including the name: message used to give it a

name, which was used in the brainfuck implementation. Table 2 gives a brief overview
of the Grammar protocol.

16For the COLA SVN revision 646, this executable is function/jolt2 relative to the COLA installation
directory.
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startRule returns the start rule of this grammar
name: aSymbol assigns the grammar a name
named: aSymbol retrieves the grammar with the given name from all grammars
startSymbol: aSymbol sets the start symbol for the grammar
parserOn: aStream returns a parser for this grammar reading from the stream
printOn: aStream prints the grammar on the given stream

Table 2: The protocol of Grammar objects.

1 ... preliminaries ...

2 {

3 forward = ’>’

4 ...

5 program =

6 instructions _ <- (let () [result eval] (printf "\n"))

7 }

8 ++++++++++[ >+++++++ >++++++++++ >+++ >+ < < < < -] >++. >+.+++++++..+++. >++. < <++++++++++++++

9 +.>.+++.------.--------.>+.>.

Listing 3: An instantly executing version of the brainfuck “Hello, world!” application.

Using the curly braces syntax, grammars can be represented literally in code, which
is convenient. Unlike most other literals—e. g., strings or numbers—though, grammar
literals do not evaluate to the corresponding objects one would expect—in this case,
Grammar objects. Instead, they evaluate to Parser objects. For this reason, it is neces-
sary to quote a grammar literal in order to assign it a name as in the sample brainfuck
implementation, or in the abstracted example above and in section 2.2.

4.2 Parsing Details

Recapitulating what was said above, an expression { ... definitions ... } will
cause the COLA reader to create a grammar object; the read-eval-print loop will then
evalate it to make a Parser. The last step of evaluating a Grammar, once the Parser
has been created, is to invite that Parser to run its start rule to consume as much input
as it wants to take from the current input stream.

By default, the start rule of a grammar is its final rule. In the case of the brainfuck
grammar, this holds for the program rule. With this in mind, it occurs that the brainfuck
version of “Hello, world!” could have been written as an “instant executable” carrying
its own language implementation as shown in Listing 3. Note how the grammar is, in
this case, not quoted, and how the brainfuck code immediately follows it.

The last rule in a grammar definition does not have to be named, and there is one
special case that involves such unnamed rules. Consider a grammar literal of the form
{ x-y }—it only consists of one unnamed rule of the form x-y. As mentioned above,
this rule implicitly becomes the start rule of the grammar. Rules of the form x-y
actually hand over control to a parser for the rule y in grammar x, leading to that parser
consuming input until the rule has been processed. After that, control is returned to
the outer parser from whose context x-y was started. Whatever parsing the y rule in
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grammar x returns will be consumed as input by the outer parser.
Putting it all together is best done with a concrete example: take any of the files

containing brainfuck programs. The { brainfuck-program } “statement”, with which
the file begins is an example of a grammar literal handing over control to another parser
by means of an unnamed start rule. The program rule in the brainfuck grammar
consumes all further input until the program rule finishes, which will happen when end-
of-file is reached.

The result from parsing brainfuck instructions—a COLA AST in S-expression form—
is returned from the brainfuck parser and consumed by the outer parser. This happens
to be the standard parser of the COLA function environment, and what it does when it
consumes ASTs is to generate native code and execute it.

This is how the brainfuck JIT compiler actually comes into being.

5 Summary

This tutorial has demonstrated how to implement a simple programming language in
COLA using the available PEG implementation. The brainfuck programming language
was chosen for its simplicity, which allowed for concentrating on the features of COLA
instead of language features.

Various improvements are conceivable. For instance, it could be interesting to realise
the brainfuck implementation as an interpreter that executes the language semantics
as parsing goes along, instead of generating a complete AST of the input program and
passing that to the just-in-time compiler.

It would also be nice to have an actual brainfuck compiler generating binary files
that could be executed independently. COLA, in its current version, lacks the ability
to serialise generated native code to files. This feature is planned for the near future,
however.
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A Complete Source Code

1 ;;; brainfuck implementation using the function part of COLA

2 ;;;

3 ;;; This particular implementation runs in version 2 of the environment.

4

5 ;;; License (MIT License)

6 ; Copyright (c) 2009 Michael Haupt
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7 ; michael.haupt@hpi.uni -potsdam.de , http ://www.hpi.uni -potsdam.de/swa/

8 ;

9 ; Permission is hereby granted , free of charge , to any person obtaining a copy

10 ; of this software and associated documentation files (the "Software"), to deal

11 ; in the Software without restriction , including without limitation the rights

12 ; to use , copy , modify , merge , publish , distribute , sublicense , and/or sell

13 ; copies of the Software , and to permit persons to whom the Software is

14 ; furnished to do so, subject to the following conditions:

15 ;

16 ; The above copyright notice and this permission notice shall be included in

17 ; all copies or substantial portions of the Software.

18 ;

19 ; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS OR

20 ; IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,

21 ; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

22 ; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER

23 ; LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,

24 ; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

25 ; THE SOFTWARE.

26

27 ;;; bind library functions

28 (define putchar (dlsym "putchar "))

29 (define getchar (dlsym "getchar "))

30

31 ;;; the memory

32 (define mem -size 32768)

33 (define memory (calloc mem -size 1))

34

35 ;;; the pointer

36 (define P memory)

37

38 ;;; convenience functions

39 (syntax inc (lambda (node compiler) ‘(set ,[node second] (+ ,[node second] 1))))

40 (syntax dec (lambda (node compiler) ‘(set ,[node second] (- ,[node second] 1))))

41

42 ;;; grammar and language implementation

43

44 [’{

45 forward = ’>’

46 backward = ’<’

47 increment = ’+’

48 decrement = ’-’

49 put = ’.’

50 get = ’,’

51 while = ’[’

52 wend = ’]’

53

54 bfsymbol =

55 forward | backward | increment | decrement | put | get | while | wend

56

57 _ = (! bfsymbol .)*

58

59 instruction =

60 _

61 ( forward <- ’(inc P)

62 | backward <- ’(dec P)

63 | increment <- ’(inc (char@ P))

64 | decrement <- ’(dec (char@ P))

65 | put <- ’(putchar (char@ P))

66 | get <- ’(set (char@ P) (getchar ))

67 | while _ instructions ->0 _ wend <- ‘(while (!= 0 (char@ P)) ,[self @ ’0])

68 )
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69

70 instructions =

71 instruction*->0 <- ‘(let () ,@[self @ ’0])

72

73 program =

74 instructions _ <- (let () [result eval] (printf "\n"))

75 } name: ’brainfuck]
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