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Abstract Live programming provides feedback on run-time behavior by visualizing concrete values of
expressions close to the source code. When using such a local perspective on run-time behavior, programmers
have to mentally reconstruct the control flow if they want to understand the relation between observed values.
As this requires complete and correct knowledge of all relevant code, this reconstruction is impractical for
larger programs as well as in the case of unexpected program behavior. In turn, cross-cutting perspectives on
run-time behavior can visualize the actual control flow directly. At the same time, cross-cutting perspectives
are often difficult to navigate due to the large number of run-time events.

We propose to integrate cross-cutting perspectives into live programming environments based on local
perspectives so that the two complement each other: the cross-cutting perspective provides an overview of the
run-time behavior; the local perspective provides detailed feedback as well as points of interest to navigate the
cross-cutting perspective. We present a cross-cutting perspective prototype in the form of a call tree browser
integrated into the Babylonian/S live programming environment. In an exploratory user study, we observed
that programmers found the tool useful for debugging, code comprehension, and navigation. Finally, we
discuss how our prototype illustrates how the features of live programming environments may serve as the
basis for other powerful dynamic development tools.
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Broadening the View of Live Programmers

1 Introduction

Live programming environments promise to make programming more accessible and
programmers more productive by continuously providing feedback on the dynamic
behavior of a program [10, 40, 43]. Some live programming environments generate
this feedback by running parts of the program with concrete, user-provided input,
often in the form of examples [4, 38]. They hint at run-time behavior by displaying
intermediate run-time states or results of expressions or statements [4, 13, 14, 21].
As a result, they offer a local perspective on the program behavior, which allows
programmers to comprehend the behavior of their programs on the most detailed
level and to check any invariants or hypotheses about run-time state directly within
the live programming environment. To focus this feedback on relevant parts of the
program, many live programming environments allow programmers to express for
which expressions or statements they want to get feedback by attaching so-called
“probes” [26, 38] (see Figure 1).

While providing benefits for understanding single procedures of a program in detail,
this local perspective does not scale to programming more extensive, more complex
programs or systems. When working on systems, programmers need to understand not
only the behavior within a single, isolated procedure but also the interplay between
several or many of them.

Figure 1 shows an example in which programmers will struggle to comprehend code
using the local perspective of the Babylonian Programming editor, a live programming
environment supporting explicit examples and probes. In this scenario, the program-
mers try to understand the AtomMorphmethods velocity: and randomPositionIn:maxVelocity:
in the context of BouncingAtomsMorph>>addAtoms:. The method addAtoms: contains the
example “basic example” that is the start of the execution whose intermediate states
are displayed in the probe in the bottom editor. When looking at the probe in the
bottom editor, the programmers discover a pattern in the values: there is always one
point 10@10 followed by two seemingly random points. As there is only one call of
velocity: in randomPositionIn:maxVelocity: this pattern comes as a surprise to them. At the
same time, the live programming tools do not support them anymore to investigate
this pattern any further.

When such limits of the local perspective are reached, programmers have to resort to
other tools that allow them to explore the system behavior at a cross-cutting perspective
that displays the control flow throughout the system. Regardless of whether they
switch to programming tools working with static or dynamic data, they lose the
relation to the examples they are currently working with. When switching to a tool
working with static information, such as tools for browsing senders and implementers
of methods, they have to manually reconstruct the control flow between relevant
methods. In the case of another tool using dynamic information, such as a call trace
or a debugger, they have to first recreate the running example in that tool, and then
also have to navigate to the points of interest, which they already selected in the live
programming tool. Either way, this lengthens the feedback loop and diminishes the
experience of liveness while programming.
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Figure 1 Babylonian browsers showing a situation in which a local perspective will not
suffice to interpret probe values. Programmers added an example called “basic
example” to the method at the top (A). The values in the probe at the bottom (B)
suggest at least two kinds of calls to velocity:, one of them shown in the middle.
The four browser panes that are the same in (a) and (b) show packages, classes,
method categories, and methods.

In this paper, we aim to extend the live programming experience to programming
more extensive and complex programs. Therefore, we propose to integrate a call
trace as a cross-cutting perspective on run-time behavior into a live programming
environment, so that programmers can directly and without switching tools explore
the interplay of methods and get live feedback on how their changes affect this
interplay (see Figure 2).

However, integrating a call trace into a live programming workflow poses a new
challenge, as call traces typically consist of a large number of events and are therefore
difficult to navigate. To address this, we propose to regard the local perspective as the
starting point for exploring the cross-cutting perspective, thereby adding a “bottom-
up” navigation to the typical “top-down” perspective of call trace tools. In particular,
the probes and examples placed in the local perspective already designate points of
interest that programmers are aware of and are thus useful starting points. Further, to
provide programmers with an initial idea of the interplay of methods, we extend the
local perspective with summarized trace information [31]. Through this integration,
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Figure 2 A browser window in our proposed live programming environment integrating call
trace views as a cross-cutting perspective on run-time behavior (C). Programmers
can see that the probe values result from three different paths (D). The sidebar
(C) provides further details, as it is currently showing the summarized paths view
for the probe in velocity:. The colors of the icons correspond to the colors in the
probe (E). Programmers can also jump to a trace view entry corresponding to a
value (F).

programmers continue to benefit from short feedback cycles in the local perspective,
can directly switch to the cross-cutting perspective based on concrete run-time states,
and also benefit from live feedback at the cross-cutting perspective.

The contributions of this paper are:
The discussion of the local perspective on run-time behavior as a limiting factor for
using live programming tools for working with more complex programs.
The concept of integrating a cross-cutting perspective of run-time behavior into a live
programming environment. The integration is supported by allowing programmers
to navigate the cross-cutting perspective via the displayed run-time states as well
as summarized traces in the local perspective.
A prototype integrating call trace views as a basic cross-cutting perspective into
the Babylonian Programming environment, an example-based live programming
environment.
An exploratory user study on the impact of the cross-cutting perspective in our
prototype on dynamic tool usage.
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Outline In the remainder of the paper, we first discuss the challenges arising from
local perspectives in live programming environments and review related work and
their approaches to this challenge. We then introduce our concept of integrating a
cross-cutting perspective based on our prototype in the Babylonian programming
environment. To examine the effects of this extension of programmer behavior, we
present the results of an exploratory user study. We conclude with a discussion of the
results of the study, how live programming tools can help with debugging, and how
they can serve as a basis for advanced programming tools.

2 Local and Cross-Cutting Perspectives in Live Programming

The local perspective of most live programming environments can provide program-
mers with concrete and immediate feedback on the evaluation results of single state-
ments or expressions. While this is the source of their strength, it is also the limiting
factor when scaling up to programming more extensive and complex systems. To
discuss this, we describe the role of local perspectives in present live programming
environments and why their utility degrades in the presence of complex control flow.
Further, we illustrate how present live programming environments mitigate this and
to which extent they already include cross-cutting perspectives. Finally, we provide
a short overview of the relevant features of the Babylonian/S environment, which
serves as the foundation for our prototype.

2.1 The Local Perspective as a Limiting Factor

Live programming environments aim to make programming accessible and program-
mers more productive by providing direct feedback on the dynamic behavior of a
program [40]. To provide feedback on the dynamic behavior of procedures, many live
programming environments rely on user-provided input data to execute the proce-
dures. This user-provided input serves as a mental context for programmers in which
they can interpret observed values. In this paper, we call such user-provided input an
example, as it is commonly done in example-based live programming environments [4,
38].

Feedback is provided through always-on visualizations, such as projection boxes in
Figure 3a or probes in Figure 3b. These visualizations show the values resulting from
all evaluations of an expression or statement during the execution of an example.
Thereby, the visualizations are usually tied to statements or expressions. This also
applies to visualizations that show the results of all statements of a procedure.

To some extent, this locality of feedback is the source of the strengths of live
programming environments. The feedback is shown close to the code, which is the
representation of a program that programmers are most familiar with [2]. By providing
feedback close to the source code, programmers can compare the observed, concrete
values more easily to the expectations they have derived from static code.

At the same time, this local perspective is also a limiting factor when working with
more extensive systems. In order to make sense of the displayed values, programmers
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(a) Projection boxes. Figure from original pa-
per [21]

(b) Probes in Babylonian/S [39]

Figure 3 Two always-on visualizations representing a local perspective on run-time be-
havior: (a) projection boxes and (b) probes. Both provide detailed feedback on
intermediate run-time state, closely tied to statements or expressions.

have to partially reconstruct the control flow of the program in their minds. For
example, a method may contain two probes attached to different expressions and
each probe shows one value. By only looking at the values the ordering in which the
values occurred can not be deduced. The value of the first probe might have occurred
before the value of the second probe, or it might have happened the other way around.
To determine in which order the expressions were evaluated, programmers have
to mentally reconstruct the control flow and relate it to the observed values.1 This
mental simulation is feasible for small, single procedures or whenever only limited
local information is needed to determine the concrete control flow for an example.

However, when multiple or complex procedures are involved, mentally reconstruct-
ing the control flow becomes challenging and programmers have to invest considerable
effort to interpret the observed values to draw conclusions about the underlying be-
havior. This effort required to interpret the feedback contradicts one of the goals of
live programming environments, which is to offer immediate feedback on the actual
behavior of the program.

This becomes especially important when the feedback in the live programming
environment indicates that the program does not behave as intended. Although
live programming environments are specialized for providing feedback on dynamic
behavior, the limited insight into the control flow reduces the applicability of live
environments for debugging tasks. Debugging involves comparing the actual control
flow to the expected control flow and determining the source of erroneous state by
tracing the actual control flow backwards [5, 46]. The local perspective does not
make the erroneous control flow easily visible or explorable. As a result, programmers
have to resort to common debugging tools, giving up on the advantages of live
programming. Further, switching away from the live programming environment
entails first reconstructing the example for the debugging tool and second navigating
to the run-time state of interest. Finally, on changes to the program, programmers
must again manually update the example and navigate to the relevant run-time state.

1We also call this problem the diamond problem of live programming, as it is unclear from the
local perspective which paths were taken to reach individual values.
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These manual steps lengthen the feedback loop and deteriorate the overall experience
of liveness during programming.

2.2 Cross-Cutting Perspectives in Live Programming Environments

While a local perspective emphasizes intermediate run-time states at a confined
location, a cross-cutting perspective shows the connections between different locations
and run-time states. Common examples of tools providing such a perspective are
control flow visualizations such as trace viewers, bundle views, or object interaction
diagrams [1, 11, 20]. Other examples include visualizations of data flow such as data
flow tomography [27] or changes to variables [13].

Notably, the local and cross-cutting perspectives as we define them are the two
ends of a spectrum that ranges from views on a single element to views that span all
elements of a program. Many views are close to the local or the cross-cutting end,
for instance, probes and control-flow visualizations. However, some views also fall
in between the ends such as a profiler visualization that colors each statement in a
program according to its call count. This provides detailed information per statement
but also connects the statements to each other.

Related live programming environments include cross-cutting perspectives to vari-
ous degrees. Our proposed environment is most closely related to other live program-
ming environments that build upon a local perspective to provide feedback.

Two environments support combinations of local and cross-cutting perspectives:
Shiranui [12] and Seymour [14]. Both include a basic cross-cutting perspective by
highlighting the statements that have actually been executed during the execution of
an example. In addition, Shiranui allows programmers to select individual intermedi-
ate run-time states and see the dynamic slice for that value [12]. Seymour also offers
a more advanced view in the form of an icicle plot [19] visualizing the stack over time.
Programmers can also use the icicle plot to focus the local perspective on specific stack
frames. According to the accounts of applying Seymour to student programs, the icicle
plot works well for smaller programs but does not scale to more extensive programs,
as it is missing relevant information such as the names of called procedures [14].

The YinYang [26] includes a cross-cutting perspective based on a custom trace. This
trace displays the results of manually placed print-statements and allows programmers
to navigate the code using them. This offers some form of cross-cutting perspective,
but the manual, explicit annotation of points of interest that should appear in the
trace might hamper exploration.

A different cross-cutting perspective is provided by Omnicode [13]. Instead of visu-
alizing the control flow, Omnicode visualizes changes to the complete run-time state
throughout the whole program execution. A similar perspective is part of DejaVu [15]
for interactive camera-based programs, but it requires users to explicitly choose which
states should be displayed over time.

Interestingly, the example-centric environment [4] does not implement a local
perspective, but only a cross-cutting perspective. The program behavior is visualized
in a full execution trace, that shows every single step of the execution and the concrete
data used in these steps. Programmers can thus explore the full execution but also have
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to navigate it to determine all results of a single expression. Similarly, the Theseus [23]
environment does not provide a local perspective, but a cross-cutting perspective in
the form of a call tree of JavaScript methods.

Other environments focus on different design aspects and do not yet provide cross-
cutting perspectives, such as Live Literals [42], Live Brackets [17], Hazel [29], and
Light Table [9].

Projection Boxes [21] as a generalized visualization framework for a local perspec-
tive does not yet offer a cross-cutting perspective, but the mechanism of projecting
the semantics into values to be displayed can serve as a powerful foundation for
integrating a cross-cutting perspective with a local perspective. Similarly, the Field
environment [3] offers general visualization of program behavior for live coding per-
formances directly within the programming environment, thus potentially enabling a
live cross-cutting perspective.

2.3 The Babylonian/S Programming Environment

We implemented our prototype as an extended version of the Babylonian/S pro-
gramming environment [38], an example-based live programming environment in
Squeak/Smalltalk. There are two core concepts relevant to the integration of the
cross-cutting perspective: examples and probes.

Programmers can annotate Smalltalk methods with examples, which contain neces-
sary objects to call a method (see Figure 4). These can either be method examples, for
which programmers must provide scripts to initialize the receiver object and scripts to
create the argument objects. Further, it can also be a generic script example, which can
be any code snippet, that will invoke the annotated method. Programmers can name
examples to communicate what they illustrate and configure set-up and tear-down
scripts to handle any necessary system state.

To get feedback on dynamic behavior, programmers can then place probes on
arbitrary expressions in the code [26] (see (B) in Figure 1). Probes record the results
of every evaluation of the expression during the execution of an example. In the inline
visualization of the probe, these snapshots are ordered according to their time of
recording.

3 Integrating a Cross-Cutting Perspective Into a Live Programming Environment

To expand the experience of live programming to working on systems and debugging,
we integrated call trace views as a cross-cutting perspective into the Babylonian/S
live programming environment. We outline the features of the resulting environment
and describe the underlying design decisions.

The major design challenge is the mismatch between the requirement of immediate
feedback and the inherent complexity of call trace visualizations resulting from the
complexity of the traces themselves. Depending on the task at hand, a different
call trace tool offers suitable feedback [6]. Thus, we present programmers with
three different kinds of views which are optimized for different usages. Further, the
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Figure 4 The Babylonian/S code browser, based on the Squeak/Smalltalk code browser,
without the new cross-cutting perspective tools. The standard Squeak/Smalltalk
browser provides panels to select a method of interest (through selecting the
package, class, method category, and lastly the method itself) (A) and a field
for editing code, displaying the currently selected method (B). Included in this
browser are core Babylonian/S features: The ability to define examples at the
top of the code editing field (1) and two probes that display concrete information
based on the example (2). In this specific case, a method example is used that
has a small script to create an instance of the current class whose purpose is to
draw a small scene with a tree and a background. The probes then display some
of the variables used during drawing, in this case, one displays the canvas data
visually and one displays a later canvas as data.

complexity of call traces also makes them difficult to navigate. Thus, our environment
offers several means to navigate the cross-cutting perspective based on the local
perspective. Also, we extended probes with path indicators and a visualization of
control flow based on information from the call trace.

3.1 Three Views for the Cross-Cutting Perspective

Our environment provides three views of a call trace: full call tree, summarized call
paths, and detailed call paths. All of them are based on a recorded trace of method
invocations and probe hits during the execution of an example. They are live, meaning
the displayed information is updated immediately on every change to the system.
To mitigate cluttering with irrelevant information, the trace views can be filtered
by programmers by selecting modules for which the method invocations should be
included in the trace views. Our proposed views are general views of control flow, as
the aim of this work is not to develop a new visualization of dynamic behavior but to
integrate such visualizations into a live programming workflow. All three views can
be accessed in the sidebar of the code browser. The top pane of the sidebar shows
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Figure 5 The call tree view showing one entry per method, block, or probe invocation. The
second column displays additional information such as the recorded probe value.

all active examples. The second pane shows the different views. For the summarized
and the detailed paths views, a third pane appears, that lists all probes or methods
invoked during the execution of the selected example.

Full Call Tree View The full call tree view shows method calls and probe hits, nested
according to caller relations (see Figure 5). The top entries in the tree are the calls
occurring during the example execution, thereby this view can be interpreted as
looking downward from the example into the tree. The displayed trace is exact
in that it shows invocations of closures, including non-local invocations, and stack
manipulations that can occur in Squeak/Smalltalk, such as resumed exceptions or
generators.

For method calls, the tree also displays a number representing the identity of the
stack frame, providing programmers with orientation in the case of co-routines. For
probe hits, the tree shows the recorded values and the source code enclosed by the
probe. To browse different invocations of a method, the context menu of tree entries
allows one to jump to the next or the previous invocation of a method.

Summarized Paths Views Often, programmers might only be interested in the local-
ization of a particular probe or method in the overall control flow. Therefore, we
included the summarized paths view that can be interpreted as looking up from a
single probe or method towards the example (see Figure 6a).

The summarized paths views display the different paths the control flow takes from
the example to the probe or method. One summarized path represents a group of
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(a) The summarized paths view for probes. It shows the possible stacks whenever the selected probe is
invoked. The sidebar also offers a corresponding view for methods.

(b) The detailed paths view for probes. It shows all invocations of the probes and the stack at invocation
time. The sidebar also offers a corresponding view for methods.

Figure 6 The two paths views: summarized paths (a) and detailed paths (b).
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invocations that all had a stack corresponding to the methods in the path [31]. Thus,
for one path there might have been several invocations of a method or a probe that
all had the same invocations on the stack.

To ease the comparison of paths, the common ancestor of all paths is highlighted in
green. The section of the path above the common ancestor is the same for all paths.

Detailed Paths Views The summarized paths views show all actual control flow paths
during an example. While programmers can get an overview with the summarized
views, they can not display run-time data of individual traces along these paths. To
see run-time data, programmers can select the detailed paths view for probes and
methods (see Figure 6b). This view shows all traces leading to a probe or a method.
In the case of the detailed probes view, each trace ends with a recorded value. Thus,
this view can be used to inspect individual stacks for recorded values.

Note on Response Times As a short feedback loop is an elementary part of live
programming environments, we briefly discuss the impact of the instrumentation
on the system response time. The following is not a detailed performance analysis
and should not replace one, but serves as a short characterization of the orders of
magnitude. We use an instrumentation based on byte-code rewriting whose worst-case
performance penalty when instrumenting the whole system including the standard
library is a factor of 23 with an average performance penalty of about a factor of 10.
This makes live feedback still feasible, as examples are small in scope. As long as they
run for less than 100ms, they will on average finish within 1 s when every single call
in the example is recorded. Further, these numbers are upper bounds as they assume
that the complete runtime system is instrumented. Focusing the instrumentation on
methods outside of the standard library can reduce the number of calls to be recorded
considerably and thus the run-time overhead.

3.2 Combining the Local and the Cross-Cutting Perspective

To make the information on the cross-cutting perspective directly available, we support
jumping between the code and the trace views. Further, to provide programmers with
initial information on the control flow without requiring them to switch to the trace
views, our environment offers inline path indicators and inline visualization of value
succession.

Jumping Between Code and Trace Views Programmers can navigate from elements in
the source code editor to entries in the trace view and vice versa.

To contextualize a single probe value within the overall control flow, programmers
can display the corresponding entry in the trace view via the context menu of the value
(see (A) in Figure 7). This will select the corresponding probe invocation entry in the
full call tree and the detailed paths view. Jumping to the summarized paths view will
select the corresponding path. Further, programmers can jump to the call trace entry
of the first invocation of a method through the context menu of a method. Navigating
to other calls of the method can be done via the navigation actions described above.
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C

Figure 7 The three combinations of the local and the cross-cutting perspective. Program-
mers can jump from probe values to the entries in the currently open trace view
via the context menu of a probe value (A). The colored bars below probe values
indicate the path that led to the probe invocation recording this value (B). When
hovering over a probe value, the editor shows arrows to the probe values in the
same method that were recorded before and after the hovered probe value (C).

Programmers can jump from every method entry in a call trace view to the method
implementation by double-clicking on the entry. Doing so on a probe entry will open
the method containing the probe. Further, programmers can directly inspect probe
values by double-clicking on probe values displayed in the call trace views. This will
open an interactive object explorer, which allows programmers to inspect the internal
state and invoke methods on the object.

Inline Value Path Indicators To reduce the need to switch to the call trace views, probes
indicate the summarized path that led to a recorded value as a colored bar below the
value (see (B) in Figure 7). Thus, programmers can easily determine whether values
result from different paths. The colors of the bars correspond to the path icon colors
in the summarized paths view for probes (see Figure 6a).

Inline Visualization of Value Succession The full call tree view allows programmers to
determine the temporal succession of any two probe values. However, this requires
switching to the call tree view and manually navigating to the two probe values. To
allow programmers to directly see the temporal relation between the probe values
within one method without the need to switch views, we visualize this relation (see
(C) in Figure 7). On hovering a value, two arrows are shown, indicating which value
was recorded before the hovered value and which one afterward.

4 Walk-Throughs

One of the goals behind Babylonian/S is a better connection and visualization of the
relationship between source code and its run-time behavior [38]. To tighten that
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connection, programmers define examples inside their source code that automatically
run in the background whenever code is changed. Programmers usually have no
insight into the behavior of the code covered by an example (except for possible side
effects caused by the example execution). To gain insight into the run-time behavior
of an example, Babylonian/S offers probes, assertions, and replacements, which we
refer to as annotations. These annotations can give programmers insight into the
example execution process at manually selected points during its execution.

As of now, programmers are forced to either step through the example in a debugger
or increase the number of probes to get a more overarching picture of the code. For
example, programmers who are interested in which procedures are called from a
procedure could run the entire example in a debugger or place probes in a variety of
possibly executed procedures.

When using multiple probes, it can also be difficult to understand the relationships
between multiple probes.

Based on these observations, and our own experience with working with Babyloni-
an/S, we determined the following use cases where Babylonian/S could benefit from
call graph information (each use case is scoped to the execution of a single example):
1. Which procedures/annotations are executed?
2. Given a procedure/annotation, when is it executed during the example execution?
3. Given a procedure call, what other procedures are called from it?
4. How do all executions of a single procedure/annotation relate to each other (both

temporal and structural)?
5. Given two or more procedure/annotation executions, how do the executions relate

to each other?
We aim to aid users in these use cases by providing them with call graph exploration

tools that further narrow the gap between source code and run-time behavior. We
present two walk-throughs that show how our additional call-graph-based tooling can
aid programmers in those use cases.

For all walk-throughs, call graph tracing was activated for (i) all methods located
in Morph, Model, and their subclasses (ii) all methods in the RealEstateAgent and Flaps
classes (iii) the methods that contain the examples themselves. We deliberately did not
instrument all methods, so that the call graphs remain manageable in size and the call
tracing has less of a performance impact. We envision that the partial instrumentation
of only a subset of methods reflects how programmers will commonly interact with
our tools.

Walk-Through 1: Use Cases 1 and 4 A user working on the “bouncing atoms” simulation
is interested in how and when the position of atoms is updated. Thus, they are
interested in the relation between calls to the Morph >> position: method that are made
as part of the “bouncing” example. They open the method in the Babylonian Browser
(see Figure 8). No example is currently selected in the list of active examples in the
sidebar (area A; this means that areas B, C, D, and E are currently all empty).

The user now right-clicks on the method name (step 1) and selects “show in sidebar”
in the popup context menu (step 2). Since no example is currently selected, this opens
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Figure 8 Walk-through 1: How do all calls to Morph >> position: during the “bouncing”
example relate to each other? Which procedures were executed during the
example?

another popup that lets the user choose which example they are interested in. The
user selects the “bouncing” example (step 3). Another popup opens that allows the
user to select the desired visualization. They decide to open the “procedure set”
visualization (step 4). Now, the sidebar is updated to highlight the selected example
and visualization (areas A and B). Additionally, the call graph structure is generated
from the last recorded call trace of the example, if it has not already been generated.
Once finished, the visualization loads in the sidebar (areas C, D, E).

The selected procedure set visualization is split into three areas: Area C shows all
procedures that were called during the example execution. The user-selected proce-
dure, Morph >> position:, is pre-selected. Areas D and E show the context-insensitive
and -sensitive invocation paths and ancestors of all calls to Morph >> position:.

By looking at the context-insensitive common ancestor (area D), the user learns that
all of the calls to Morph >> position: during the example are coming from the method
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AtomMorph >> randomPositionIn:maxVelocity: (4). By looking at the context-insensitive in-
vocation paths, they learn that that method is called from AtomMorph >> initialize and
BouncingAtomsMorph >> addAtoms: [1].

Looking at the context-sensitive ancestor and invocation paths (area E), the user
sees that the context-sensitive ancestor of all calls to the Morph >> position: method
is BouncingAtomsMorph >> addAtoms: [1]. This means that the execution of the addAtoms:
method with context identifier 22 is responsible for all calls to Morph >> position:. This is
expected since the example consists of just a single call to BouncingAtomsMorph >> new.2

By scrolling to the bottom of area E, the user can look at each individual context-
sensitive invocation path and also see the total number of invocations ofMorph >> position:.

Now that the user selected the example in the sidebar, they can also easily see the
set of procedures (area C) that were executed during the example execution (1). The
set of Babylonian annotations can be accessed by switching to the “annotation set”
visualization (area B).

Walk-Through 2: Use Cases 2, 3, and 5 A user is interested in how and where the 11
buttons of the Squeak/Smalltalk class browser are created.

The class browser uses the ToolBuilder framework, which allows programmers to
describe the graphical user interface of a tool independent of a specific graphics
framework. In the ToolBuilder framework, programmers first describe the general
structure of the graphical interface of a tool through specification objects. After
constructing the complete specification object graph, the specification is passed to
a specific ToolBuilder class that creates the graphical objects for the corresponding
graphics framework.

The user has found one method that constructs specification objects for the buttons
in the class browser, but the method does not list all visible buttons. Also, with static
navigation tools, they get too many candidate methods and turn to examples. They
write an example that opens a class browser and immediately closes it so that running
the example does not pollute their screen with an additional instance of the browser.
The example can be seen in Figure 9. The button rows the user is interested in are
labeled with A and B.

First, the user clicks on the “view in sidebar” button on the example (step 1), which
opens a popup that asks the user which visualization they want to open. The user
selects “callgraph” to open the call graph visualization (step 2). Because the example
is fairly large, converting the call trace into the call graph takes a noticeable delay
of about one second. The sidebar now shows the call graph of the example (area C).
The tree widget initially displays the call graph fully collapsed, which means that just
three root nodes are visible (the example node, the MyClass >> browser enter node, and
its corresponding exit node).

2 If the example instead contained multiple calls to the BouncingAtomsMorph >> new method,
the context-sensitive closest common ancestor would be the example itself since the
addAtoms: method would be invoked twice with different context identifiers.
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Figure 9 Walk-through 2: Which methods related to *ButtonSpecs are called when open-
ing a browser? What methods are called when building a button from a
PluggableButtonSpec? To fit in this figure, we removed repeated rows from the
call graph (indicated by the red “repeated n times” labels).
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From their experience, the user knows that the class browser uses ToolBuilder
and that buttons in ToolBuilder are created using Pluggable(Action)ButtonSpec classes.
Therefore, they are interested in any calls that involve these classes (5). The user
could manually expand the entire call graph recursively to look for any use of these
classes by using the blue arrow icons at the start of each row.

However, a simpler alternative is to use the standard Squeak/Smalltalk tree filtering
mechanism: When the call graph is in focus, users can apply a filter to the tree simply
by typing. Knowing that, the user focuses the call graph and types “buttonspec”
(step 3). This expands the entire call graph but makes all nodes invisible that do not
match the filter and do not have any (recursive) children that match it. This greatly
reduces the size of the call graph compared to an unfiltered graph. Matching nodes
have a gray background color.

The user is now able to focus on the uses of the classes of interest and can determine
that there are four phases in which ButtonSpec classes are used. First, three ButtonSpec
objects are created (likely for the three buttons labeled as A), then, another eight
ActionButtonSpec objects are created (likely for the eight buttons labeled as B). Later,
the buttons are built from the ButtonSpec objects: First the three top buttons, then the
eight bottom buttons.

If the user is interested in one specific method, like PluggableButtonSpec >> buildWith:,
they can open its context menu using right-click (step 4). Using the “find next/prev
call to this method” options (step 5A), the user can then jump around the call graph
to explore all calls to the method (2).3

Knowing where the buttons are created, the user now wonders what procedures are
involved in the creation of a button (3). To learn about that, they re-open the context
menu (step 4) and use the “find all procedures called by this invocation (recursively)”
option (step 5B). This opens the set of methods that are called by the selected method
call in an explorer window (area D).

5 Exploratory User Study on the Effects of a Cross-Cutting Perspective in Live
Programming

The introduction of a cross-cutting perspective is a significant change to a live pro-
gramming environment. We conducted an exploratory, observational user study to
examine how a cross-cutting perspective might affect the workflow of programmers.
We decided to conduct an observational study instead of a controlled experiment to
test the effects of the cross-cutting perspective, due to the lack of a solid theory that
can be used to generate suitable hypotheses.

We expect the call tree view to be useful to programmers in particular when
debugging unexpected behavior or when exploring an unknown program. Hence, to

3Alternatively, the user could also use the combination of class and method name to filter
the entire call graph as they did previously to select all nodes that match it. Or, they could
open the procedure set visualization to inspect all invocation paths of the selected method.
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I am familiar with Smalltalk.

I am familiar with live
programming.

I am familiar with Babylonian
Programming.

100 50 0 50 100
Percentage

Response
strongly disagree

disagree

slightly disagree

neutral

slightly agree

agree

strongly agree

Figure 10 Results of the background questionnaire shown as a stacked bar chart of the
percentages of responses. Participants agreed that they were familiar with
Smalltalk and live programming. Also, participants reported to be somewhat
familiar with the Babylonian Programming environment, but not all of them.

provide study participants with opportunities to use the new tools in our cross-cutting
perspective, we decided to focus on debugging tasks. In this scope, we explored the
following research questions:

RQ1: Do programmers find the cross-cutting perspective helpful?
RQ2: For which activities do they use which perspective?
RQ3: How do programmers navigate the cross-cutting perspective?

5.1 Procedure

We investigated these questions in a think-aloud user study. We recruited 7 graduate-
level university students from our faculty (5 male, 2 female). They reported 3.5 - 12
years of programming experience, including 0.5 - 4 years of professional programming
experience. More specifically, most agreed that they were familiar with the Smalltalk
programming language and live programming (see Figure 10). This is a result of
the fact that the Squeak/Smalltalk live programming environment is used in the
project work of two compulsory undergraduate courses. Thus, while they can be
considered junior software developers with regard to their professional programming
experience, they are experienced with live programming tools. Participants reported
being somewhat familiar with the Babylonian Programming environment, presumably
as they had seen a brief demonstration of it in a lecture (see Figure 10). However, none
of them had used it themself before the study. Further, due to the demonstration, the
participants might have associated the Babylonian Programming environment with the
examiner. We aimed to prevent Hawthorne effects, resulting in participants adjusting
their answers due to sympathy towards the examiner. Therefore, we told participants
that the cross-cutting perspective was developed by a non-disclosed student as part of
their completed master’s thesis and we were considering whether to pursue the work
further.

Sessions of our study were conducted online via Zoom. Participants used their
computers running a pre-configured Squeak/Smalltalk environment, ensuring that
all participants employed the same programming environment. Each session took 2.5
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hours and started with a 20 minutes hands-on tutorial on the features of our environ-
ment followed by a short explanation of the think-aloud method. The participants
then started to work on three tasks. All participants worked on the tasks in the same
order. After completion of one task, we asked participants to continue with the next
task. Each task was introduced by first demonstrating the failure, then explaining the
application domain, and finally pointing the participant to the initial example.

After 90 minutes of working on tasks, we started the debriefing regardless of how
many tasks they completed. In the debriefing, we asked them to fill out a questionnaire
about the cross-cutting perspective in Babylonian/S. The questionnaire is based on
the utility section of the USE questionnaire [8]. After that, we conducted a semi-
structured debriefing interview. The interview includes two questions for which we
asked participants to arrange features written on virtual cards according to their
utility. The first of these questions comprised the integration of the local and the cross-
cutting perspective, and the second listed the three different kinds of cross-cutting
perspectives as well as probes in general as a representation of the local perspective.

Detailed Description of Tasks Participants worked on three tasks.4 All tasks were in
domains new to participants. As starting points, we created an initial example for
each task. That example executed a script including steps that we used to manually
demonstrate how the program to work on failed. Further, the tracing was scoped to
the packages of the classes that were used in the initial example. We designed the
tasks so that each required a different debugging approach.

The first task is to repair a defect in a small graphical gas tank simulation. To find
the defect, programmers have to first identify an argument as erroneous. Then they
have to trace its origin up the stack and down the stack again to find the erroneous
expression. As a starting point, we provided an example that executes one step in the
simulation. The minimal number of classes that the participants need to understand
for this task is 2, which together contain 41 methods with a total of 482 lines of code.

The second task is to find a defect in an interactive programming tool that displays
dependency information for packages. Repairing this defect requires programmers to
find the initialization of the erroneous state. This erroneous state does not directly
lead to the observed failure but only later after a user event. Thus, directly examining
the stack at the time of failure will not suffice. As a starting point, we provided an
example that mimics the user interactions of selecting the package and the class
that led to the failure. The minimal number of classes that the participants need to
understand for this task is 1, which contains 50 methods with a total of 758 lines of
code.

The third task involves debugging an indirect recursive evaluation of a method. This
method is a rule of a visitor working on an abstract syntax tree of a simple expression
language that can be styled with additional markup. Debugging this involves finding
the method that creates the styling objects in the first place and understanding that

4We have published the task materials at https://doi.org/10.5281/zenodo.10461488 (accessed
February 20, 2024).
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It helps me be more
effective.

It helps me be more
productive.

It is useful.

It makes the things I want to
accomplish easier to get

done.

It saves me time when I use
it.

It meets my needs.

It does everything I would
expect it to do.
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Figure 11 Results of the utility questionnaire shown as a stacked bar chart of the per-
centages of responses. The questions refer to the cross-cutting perspective and
its integration into the local perspective. Most participants agreed that it was
helpful and that it makes things easier and saves time. At the same time, they
reported that the tool did not provide everything they expected.

the problematic method is recursive. As a starting point, we provided an example
that includes the parsing of a simple expression in the expression language and the
application of the styling visitor. The minimal number of classes that the participants
need to understand for this task is 1, which contains 17 methods with a total of 133
lines of code.

5.2 Utility of Cross-Cutting Perspective (RQ1)

Results of the utility questionnaire show that the majority of the participants perceived
the live programming environment in combination with the cross-cutting perspective
as generally useful (see Figure 11). In the debriefing interview, participants explained
that they found it most useful for debugging and navigation (for details see Section 5.3).
With regard to the cross-cutting perspective itself, they mentioned typical advantages
of trace-based tools such as seeing all of the invocations at once or being able to go
back in time. Many participants felt that the tool did not yet do everything they needed
it to (see last question in Figure 11). We discuss the missing features throughout the
following sections.

Cross-Cutting Perspective as Extension With regard to the integration of a cross-
cutting perspective into a live programming environment supporting probes, many
participants treated the cross-cutting perspective as an add-on to the probes and the
probes as the primary feature of the environment. This is for example reflected in the
answers to the utility-rating questions, for which all participants rated the probes as
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the most useful feature. P1 also articulated this explicitly in their interview: “If I had
not had the probes, the call tree view would have been not as helpful.”5

Alternative Tools To determine which tools our environment subsumes, we asked
participants which other tools they would have used to solve the tasks. Most of them
mentioned the step-wise debugger, static navigation tools for browsing senders and
implementers of methods, and the Squeak/Smalltalk object inspector. Thus, for our
participants our proposed environment seems to offer features similar to what common
debugging and navigation tools provide.

Participants with Negative Responses P1 and P2 disagreed with all utility questions in
the questionnaire (see Figure 11). During the interview, we determined that P2 had
not yet used any trace-based tool during programming beyond printf-debugging. As a
consequence, they struggled to make sense of the presented information. Further, P2
expected the tool to display information that is more immediately useful to them: “I
expected to be able to see more in it than is actually possible. I tried to see something
directly in it. That was not very successful.” P3 was overwhelmed by the amount of
information presented and as a result, they resorted to their usual workflow of using
static navigation tools and a step-wise debugger: “This [using the debugger] probably
also happened as there is so much text and there are so many widgets on the right that I
felt a bit overwhelmed by them.”

Little Anticipated Benefit for Writing Code Finally, we assumed debugging to be the use
case in which the tool is most useful. Ideally, they would also be able to use the cross-
cutting perspective to spot misunderstandings early on during writing their program.
However, as the views still contain many elements and thus require programmers
to focus on them to interpret them, we do not expect the cross-cutting perspective
to yield much benefit for writing code yet. To test this assumption, we asked the
participants whether they would use the cross-cutting perspective while writing code.

All participants answered that they would primarily use the probes for writing
code. Some said they might occasionally look at the cross-cutting perspectives when
working with complex control flow or when extending existing code. For example, P4
said: “I think the tools are more suitable for getting insights about the code […] It might
be helpful if you’re hooking into something, if you’re extending code, or if you’re hooking
into a module somewhere. But if you really write completely new code, then you don’t
need much code understanding.” At the same time, most participants stated they could
not imagine using the cross-cutting perspective for writing code but would make use
of it when unexpected program behavior occurs. P3 explained it as “I don’t think [that
I would use it to write code] because when I’m writing code myself I have this internal
model in my head […] When you’re designing behavior yourself, you’re so much into the
subject that you wouldn’t use the right [the cross-cutting perspective]. I would really only

5All quotes have been translated from the participants’ native language to English.
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use the right [the cross-cutting perspective] when I notice that it is not doing what it’s
supposed to do and then to find a fault.”

These statements confirm our own assessment, that the cross-cutting perspective is
primarily used to understand behavior in retrospect. A potential avenue for future
work to improve the usefulness of the cross-cutting perspective for writing code may
be to devise a compact graphical visualization that is easier to consume.

5.3 The Two Perspectives for Debugging and Navigating (RQ2)

With regard to activities in the different perspectives, the participants who found the
environment useful mostly used it for the common debugging workflow of identifying
erroneous state and tracing it from the failure of the program to the defect in the source
code [46]. In general, it is not surprising that participants employ dedicated debugging
techniques, given that they worked on debugging tasks. However, more specifically,
we could also observe that participants employed the cross-cutting perspective as a
focused navigation tool.

The Two Perspectives During Debugging We observed that all participants used probes
to find erroneous state as a first step during a task. Among others, P2 explicitly men-
tioned this during the interview: “This [finding faulty state] is what I use debugging
tools for, so going in and looking at all the state first. Most of the time that’s a good
technique, and of course, probes are handy for that.” Once they deemed some state
as suspicious, they tried to find the origin of the erroneous state by navigating the
trace with a combination of a call trace view and probes. When they found a suspi-
cious method, many started to slowly read its source code and occasionally checked
hypotheses by placing probes. P1 described this overall workflow as “I noticed that it
is very similar to the standard workflow with the debugger and the object inspector, but
it has the advantage that I can look at all call stacks at the same time.” While almost all
participants likened their workflow in our environment to their workflow when using
a debugger, some participants noticed the benefit of not having to restart and reset
their debugging tools. For instance, P6 stated: ”I used the tool to see how the call came
about. Typically I would have to open a debugger and step to it. The [tool] took that step
off me.”

Cross-Cutting Perspective for Navigating Within this general approach, participants
used the cross-cutting perspective primarily for navigating between methods relevant
for the task at hand. Many stated that they would have normally used the senders
and implementers tools for the same task, but that the cross-cutting perspective was
more helpful as it only displayed the methods that were actually executed. This is
particularly relevant as Smalltalk employs dynamic dispatch and navigating several
levels of polymorphic calls usually requires programmers to keep track of the involved
classes. P5 explained it as “Probes show values and the sidebar shows control flow, which
method is called from where and how. I could otherwise only find out about that by
looking at what the senders are. […] But those wouldn’t be the actual senders in the
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example. It is very good, it shows me information that would otherwise require effort to
get.”

Preferred Views During all of the tasks, we observed that participants used the full
call tree and the summarized paths view for probes. Besides tracing the origins of
state back in time, some participants also employed the full call tree view at the
beginning of a task in a top-down manner to get an overview of the involved methods.
Participants who employed the summarized probe paths view used it to determine
which paths might be relevant. They did so by comparing differences between the
paths. One participant went through the list of paths one-by-one, to exclude the
ones that did not lead to the erroneous state. Very seldom participants opened the
summarized method paths view and none used it a second time. One participant
stated, that they felt it was redundant with the summarized probe paths. For them,
the probes view served the same need as the methods view, as they always had probes
in the methods they were interested in. This corresponds to our initial assumption
that probes denote points of interest in a program execution.

None of the participants used the detailed paths views. This might be the result of
how we designed the study tasks, but may also hint at a more general insight on the
tool design. When asking questions on run-time values, participants were interested
in specific values, shown in the probes. When asking questions about the control flow,
they were only interested in the general paths, not specific ones. Thus, they used they
preferred the summarized paths views over the detailed ones.

At the same time, one participant asked for a view displaying the values of all probes
interleaved and ordered according to their recording time. They wanted to use this
view to determine when inconsistencies in the run-time state first occur and how
they spread. Several participants asked for some form of state-based cross-cutting
perspective. They were mostly interested in seeing all reads and writes to instance
variables and how they related to the overall control flow.

5.4 Navigating the Local and the Cross-Cutting Perspective (RQ3)

When working with the full call tree view, participants mostly navigate it starting
from individual methods and probes using the features to jump from a probe value
or a method to an entry in the call tree. P4 described this whole process as “Jumping
back and forth is a very good interaction. It feels super comfortable as a workflow […]
You jump from the method to its entry and from the entry to an entry of another method
and from the entry of the other methods you can jump back [into the source code].” P7
characterized the experience as “zooming out” from a specific location and getting a
broader view of the behavior in a call trace view. Correspondingly, after examining the
call trace view, participants jumped back to a method they were interested in, which
P7 characterized as “zooming in”. A notable exception to this were the occasions when
participants explored the full call tree view in a top-down way at the beginning of a
task, to get an overview notion of the methods involved in the trace.
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For the probes view, we observed that participants did not use probes or methods
as entry points, but instead used the paths in the probes view as a list of methods to
be explored.

Limited Usage of Value Path Indicators Some participants explicitly mentioned that
they used the path indicators below probe values as hints to potentially interesting
control flow paths. However, none used the value path indicators in situations in which
it directly displayed information relevant to a question participants were currently
investigating. Even further, some participants were confused by them. Two participants
assumed the colors to correspond in some way to the objects the methods are executed
on. One of them clarified in the interview, that they were tracing the control flow
”along” one instance, and while they knew that the colored bar did not encode the
receiver object, the mismatch still confused them when trying to interpret the bars.
This hints that for an object-oriented environment, the path indicators may become
more useful when they would encode the object for which the method is executed.

Limited Usage of Value Succession Visualization The visualization of the temporal
relation between probe values within one method was not used very often. Participants
also did not use it in cases in which it would have provided information directly useful
for the current question. For example, one participant was already investigating the
method containing the fault with two probes, one showing objects from a collection
and the other showing the results of the faulty transformation for each object. In this
situation, the visualization of the temporal relation would have directly visualized
that some transformation results did not match the original objects. Instead, they
examined all probe values and checked whether they were consistent in relation to
other values of the same probe. An interleaved view of probe values as suggested by
one participant, might be beneficial for such situations.

6 Discussion

To put the conclusions from our study into perspective, we briefly examine the lim-
itations of the study. Based on the prototype and the observations in our study, we
discuss how live programming environments extended with a cross-cutting perspec-
tive can support programmers during debugging tasks. Finally, we discuss how live
programming environments may in general serve as the basis for other, advanced
tools for working with information on run-time behavior.

6.1 Limitations of the Study

We would like to emphasize that our study was exploratory and thus the presented
results do not represent general observations about the effects of a cross-cutting
perspective in live programming environments but as hints that may guide future
designs of cross-cutting perspectives. In particular, the mere transfer of debugging
techniques and the perceived utility does not imply that our environment will improve
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the workflow of programmers in any regard in comparison to other trace-based tools
or a step-wise debugger.

Further, the characteristics of the participants might have limited the range of
techniques we were able to observe.

First, while our participants widely differ in their self-reported years of experience,
they are at the same time a homogeneous group with very similar traits with regard
to their age group and their educational background.

Second and more specifically, the participants were already familiar with live pro-
gramming in an exploratory-style live programming environment such as Squeak/S-
malltalk in which all run-time state is accessible and explorable (see Figure 10). On
the one hand, this means that the participants might be experienced with working
with run-time data. On the other hand, this also might have kept them from applying
new techniques, as the difference to their usual live programming workflow might
have been small.

This also applies to the Babylonian Programming environment in particular. The
students have previously observed a demonstration of the environment which did not
yet include a cross-cutting perspective. This previous exposure to the environment
might have shaped their experience and workflow.

6.2 Insights on Debugging in Live Programming Environments

Despite its limitations, our study also is an account of how programmers employ
live programming environments for debugging. The fact that most participants could
directly transfer debugging techniques to our environment is promising, as it hints
that a live programming environment extended with a cross-cutting perspective can
indeed replace the need for a separate debugger. At the same time, this is not too
surprising, as live programming environments already work with information on run-
time behavior. In particular, the combination of probes for identifying erroneous states
and call trace views to trace their origin corresponds closely to common debugging
techniques.

The resulting experience is, however, more similar to a back-in-time debugger than
to that of a step-wise debugger [36]. While this is often beneficial, sometimes the
in-time experience provided by step-wise debuggers might help programmers reason
about a program more easily, as they follow the program step-by-step. How such an
experience can be reproduced within a live programming programming environment
remains a challenge for future studies and environments.

6.3 Adapting Live Cross-Cutting Perspectives to Other Programming Systems

We argue that the features and mechanisms we proposed are useful in the context
of other programming systems. The reason is that the problem that motivated this
work also occurs in all other programming systems that have any form of reusable
behavior, whether it is procedures, functions, methods, or even macros. Programmers
may reuse such behavior in different contexts. So, when programmers use the local
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perspective to investigate this reusable behavior, they may observe values that stem
from different usages of the reusable part.

While the problem occurs in many programming systems, we also argue that features
we proposed in this article can also be adapted to other programming systems. First
of all, the basic Babylonian Programming concepts of examples and probes have been
shown towork across several imperative languages, including Ruby and JavaScript [28]
and different programming environments, namely Lively4 [38] and Visual Studio
Code [28]. Further, the cross-cutting views only require basic tracing facilities to record
dynamic information, and a notion of evaluation order that can be used to generate a
tree of evaluations. Implementing cross-cutting perspectives in other programming
systems would only require basic features for tracing and user interface extensions.

To gather the information necessary for our proposed views, programmers would
need a mechanism to trace evaluations, as is available for most programming systems.
The tracing needs to be complete, in order to show programmers the actual behavior
and fast in order to support a live programming experience. The combination of
complete and faster tracing can be difficult to achieve in some environments, but
thanks to the small scope of example executions the overhead can be higher than
what is acceptable for whole program executions. Finally, to support summarized
paths views, programmers would need to define an equivalence relation that matches
the evaluation mechanism of the language.

Integrating the cross-cutting perspective properly into the user interface of pro-
gramming systems can be more challenging than implementing the tracing [28]. In
many environments the integration of the views themselves may be simple, as many
environments have side panes that display structural information. As an overview and
navigation mechanism, the cross-cutting views we proposed fit well into these side
panes. A major challenge is the integration between the local and the cross-cutting
perspective. While the local perspective can be implemented using automatically
added text or text augmentations that contain only text, the interactions between the
local and the cross-cutting perspective, require support for arbitrary user interface
widgets embedded into code, which is often not available.

Finally, for languages in which programmers do not directly express control flow,
the cross-cutting perspective needs to offer different views. For instance, in logic
languages such as Prolog, visualizations of the resolution may serve as a cross-cutting
perspective [30].

6.4 Future Cross-Cutting Views in Live Programming Environments

Our observations have shown that programmers can already benefit from the proposed
views that offer a cross-cutting perspective on program behavior. At the same time,
all proposed views lack the directness of the dynamic information displayed in the
probes. Instead, programmers have to consciously turn toward the cross-cutting views
and work with them. Given that there seems to be value in a cross-cutting perspective,
future views may make it even more useful.

Several new views may benefit programmers, based on the results of our exploratory
user study. While no participant used the detailed paths views, one participant asked
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for a view showing the values of all probes interleaved and ordered according to
their time of recording. They expected to use this to spot when the intermediate
run-time state becomes inconsistent. This is similar to the timeline view proposed in
DejaVu [15] and we have subsequently implemented a similar view [18]. The ordering
along absolute time may also be visualized right next to the recorded values within
the probe. This may already solve the problem of relating probe values causally, given
that the number of values is low.

In addition to this interleaved view of probe values, programmers might have
benefited from a view showing the changes to run-time state over time, similar to
what OmniCode offers [13]. This might also be integrated with the full call tree view to
show all locations in the trace when state was accessed. Similarly, to answer questions
about state changes or to trace state infections during debugging, programmers
might benefit from data flow views. As tracing state infections is a major activity of
debugging, fine-grained dynamic slicing [32, 41] may allow programmers to navigate
even more purposefully using the cross-cutting perspective [16].

An open problem remains the general complexity of views with a cross-cutting
perspective on the program behavior which impedes immediate access to informa-
tion, as programmers first have to orient themselves in the large number of visible
elements. With the summarized paths views we aimed to reduce the number of ele-
ments that programmers are confronted with. Further summarization might make the
information available more immediately. For instance, the visualization and querying
ideas of multiverse debugging may be applied to multiple example executions, to give
programmers a quick overview of essential methods for some behavior [25].

Finally, in object-oriented environments such as Squeak/Smalltalk, the views of the
cross-cutting perspective and the indicators in the local perspective may be extended
to also incorporate the current receiver object.

Studying the effectiveness of these new views, in particular whether they allow
programmers to quickly explore and grasp cross-cutting behavior, remains interesting
future work.

A general challenge for all future views remains the overhead introduced by the
tracing infrastructure. While the small scope of example executions keeps executions
generally short, the tracing infrastructure can slow down the execution so much
that it does not support immediate access to run-time information anymore, and
thereby breaks the experience of liveness. This particularly affects views that require
the example execution to finish before they can display useful information. Possible
solutions are streaming the parts of the view for which data is already available [4,
33], incremental computation that can speed up subsequent updates on changes to
the code [26, 35], or just-in-time optimization of tracing statements [44].

6.5 Future of Live Programming: Foothold for Immediate Access for Advanced Dynamic
Tools

Another way of looking at our environment is that it integrates a call trace exploration
tool into a source code editor via the local perspective of a live programming environ-
ment. This illustrates how examples and the local perspective of live programming
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environments might serve as the foothold for other advanced dynamic tools. An ex-
ample of an existing project that makes use of this potential synergy is the integration
of a code synthesis tool into a code editor via the local perspective supported by
projection boxes [7]. Based on our observations on how programmers debug in a live
environment, we see the Whyline [16] debugging tool as a promising candidate to be
integrated into a live programming environment.

When properly integrated, live programming environments such as the Babylonian
Programming system, can shorten the feedback loop of those other tools, through
short example executions and fine-grained feedback close to the source code.

Through the local perspective of such live programming environments, the feedback
is available in the source code editor, which is the dominant view programmers
use. In contrast, advanced dynamic tools, such as step-wise debuggers, back-in-time
debuggers, or call tracers, are often implemented as separate perspectives that require
context switches and thereby may hinder adoption. In contrast, the feedback generated
by tools working with static information on programs is typically displayed directly
within source code editors, for instance, syntax or typing errors displayed through
code annotations

Further, live programming tools with examples can make feedback available faster
by reducing the overhead resulting from instrumenting a whole program. For example,
in the user study investigating the usage of Theseus [23], it was found that program-
mers did not use the tool often, as they avoided the complex setup: “Their feedback
suggested that the overhead of instrumenting their entire project was too great, which
may have been what kept [the tool] in the as-needed category of tool.” Similar results
were found in a study on the usage of dynamic analysis at Siemens [45]. Explicit,
user-provided examples could serve as generic starting points for tools working with
dynamic information. As the examples represent a smaller scope to which the instru-
mentation needs to be applied, the dynamic analysis of the tools may run faster and
consequently shorten the feedback loop.

We believe that a tighter integration of tools working with dynamic behavior into the
live programming workflow, as we proposed in this paper, allows more programmers
to benefit from them.

7 Related Work: Time-Travel Debuggers

Programmers can find defects in source code quicker by reasoning backward from
a failure to the defect via the state infection chain, which is related to our cross-
cutting perspective tooling. Time-travel debuggers support this strategy by allowing
programmers to step the execution backward in time [22, 33, 34]. Building upon this
elementary time-travel feature, they often provide additional advanced debugging
features [33, 36]. Some of these advanced features also put programmers above time
and allow them to see the overall behavior of the system. For example, the Path
Finder debugger provides an integrated visualization of the call trace and the source
code of the executed methods [33]. Nevertheless, the main perspective of time-travel
debuggers often remains the in-time perspective of following along the execution
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Figure 12 A screenshot of the time-travel debugger called Omniscient Debugger [22]. The
debuggers show a trace of the method executions (“Method Trace”), the code
of the currently selected method execution (“Code”), the current state of local
variables (“Locals”), the state of the receiver object (“this”), the stack at the point
of execution (“Stack”), the current collection of active threads (“Threads”), the
output of the program (“TTY Output”), and a state inspector for user-selected
objects (“Objects”). All panes with arrows at the top can be used to navigate
through execution time.

step-by-step, either forwards or backwards [22]. Besides the advanced features, time-
travel debuggers also always provide common debugging features that are known
from step-wise debuggers.

The general procedure for using time-travel debuggers is very similar to the one
required for step-wise debuggers. However, depending on the implementation of
the time-travel debugger, programmers have to take some setup steps. Often, the
time-travel feature depends on a previous recording of the program execution, either
a complete trace or a set of checkpoints of the complete run-time state. To take that
recording, programmers often have to execute the program in a specialized run-time
environment, such as an adapted VM. Programmers have to wait for the execution
to finish before they can start debugging. Recording the execution can increase the
execution duration by a factor of 7 to 300, depending on the instrumentation technique
and whether a full trace or only checkpoints are recorded [22, 36]. At the same time,
programmers do not have to restart the program during debugging whenever they
want to go backward in time, but only when they change the source code or want to
debug using different input data. Time-travel debuggers are most often standalone
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tools. When they are integrated into an ide, the integration results from a special
plugin and not because they are a standard perspective of the IDE.

Time-travel debuggers are less common than step-wise debuggers. Nevertheless,
companies and research groups have created a variety of time-travel debuggers [33,
36]. The ZStep debugger is an early instance of a time-travel debugger available for
Lisp [24]. Programmers using it could already step backward through the source
code, as it retained a history of the results of previous evaluations. The Omniscient
Debugger records all method sends, changes to variables, and exceptions of a Java
program (Figure 12) [22]. The user interface design of the Omniscient Debugger looks
similar to a common step-wise debugger but highlights changes so that programmers
should directly see what has changed from one step to another [22, page 227]. Several
time-travel debuggers offer features beyond basic backward stepping. The PathView
debugger integrates time-travel debugging with techniques to localize faults based on
test runs [33]. Based on test runs, the tool shows a trace view that highlights the prob-
ability that the method participated in the defect. With some time-travel debuggers,
programmers can navigate the trace along causal relations [36]. For instance, the
Whyline debugging tool allows programmers to ask questions like why a statement
was executed or why a variable has the present value [16]. The Whyline answers
these questions by generating a dynamic slice. Similarly, the Trace-oriented Debugger
combines causal navigation for state with an overview of the trace [36]. To collect
a detailed trace in a reasonable time, the Trace-oriented Debugger has a complex
architecture for collecting the run-time trace [37]. Programmers get very detailed
information and causal navigation at the cost of setting up a complex infrastructure
and considerable compute resources [33]. Finally, the Undo debugger is one of a few
commercially available time-travel debuggers. To achieve low run-time overhead the
underlying infrastructure, takes periodic snapshots as checkpoints for going back in
time [36].

8 Conclusion

For live programming tools, we identified the local perspective on run-time behavior
as the source of the strength of these tools and also a limiting factor when applying
them to more extensive and complex programs in particular during debugging. To
mitigate this, we propose to add a cross-cutting perspective on run-time behavior in
combination with the local perspective. We described a prototype environment that
offers three live views of a call trace and integrates feedback on control flow with
probes. Participants of our exploratory user regarded the local perspective as the most
useful feature and the cross-cutting views as an additional, useful perspective. Further,
according to our study, the proposed environment can extend the live programming
experience to debugging and working with more extensive and complex programs.
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