Evolving User Interfaces From Within
Self-supporting Programming Environments

Exploring the Project Concept of Squeak/Smalltalk to Bootstrap Uls

Marcel Taeumel*

Robert Hirschfeld* T

*Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany
TCommunications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA

marcel.taeumel@hpi.de

ABSTRACT

It is common practice to create new technologies with the
existing ones and eventually replace them. We investigate the
domain of user interfaces (UIs) in self-supporting program-
ming environments. The Squeak/Smalltalk programming
system has a history of almost 20 years of replacing Smalltalk-
80’s model-view-controller (MVC) with Self’s Morphic, a
direct manipulation interface. In the course of this transi-
tion, we think it is likely that Squeak managed to provide an
abstraction for arbitrary UI frameworks, called projects. In
this paper, we describe plain Squeak without its user inter-
face, considering object collaboration, code execution, and
extension points in the virtual machine. We implemented a
command-line interface, the Squeak Shell, to emphasize the
simplicity of adding a new UI to Squeak using this project
concept. We believe that self-supporting programming envi-
ronments can benefit from multiple user interfaces to accom-
modate a variety of tasks.

CCS Concepts

eSoftware and its engineering — Integrated and visual
development environments; Software libraries and reposi-
tories; Software prototyping; Object-oriented development;

Keywords

User interface frameworks, Smalltalk, Squeak, bootstrap-
ping, prototyping, direct manipulation, tool building, live
programming, Morphic, model-view-controller, command-
line interface, error recovery

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

PX/16, July 18 2016, Rome, Italy

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4776-1/16/07. .. $15.00

DOI: http://dx.doi.org/10.1145/2984380.2984386

robert.hirschfeld@hpi.de

1. INTRODUCTION

It is common practice to build new technologies with the
existing technologies and eventually replace them. This prac-
tice is often referred to as bootstrapping. In the field of soft-
ware engineering and research, bootstrapping is important
for implementing new programming paradigms, languages,
tools, and environments. For example, textual languages yield
visual languages, keyboard input yields support for mouse
or touch input, or text interfaces yield graphical interfaces.
These new versions encompass not only novel ideas but also
minor increments.

The bootstrapping process is essential for improving live
programming systems [26]. Such systems have a long history
and examples include Lisp (1958) [20], Smalltalk-80 (1980)
[11, 10], Self (1987) [27], and The Lively Kernel (2008) [14].
In these systems, many parts can evolve such as the program-
ming language, the runtime environment, and the standard
library shared for common programming tasks. In this pa-
per, we focus on the evolution of the user interface, which is
arguably a vital part considering the self-sustainability and
liveness. In the beginning, there are usually external tools
involved for writing code or debugging. However, the goal
of such self-supporting systems is to modify applications
and tools in use. For that, the edit-compile-run cycle is ex-
pected to be short to foster directness and liveness. For object-
oriented systems, it is usually at the level of methods [11]
or scripts [5]. Once there is an interactive user interface,
programmers can start improving programming tools. The
system can then evolve from within.

The user interface (UI) of Smalltalk-80 systems, developed
at Xerox PARC, is called model-view-controller (MVC). The
idea was to modularize source code for data, graphical repre-
sentations, and user input to support reuse and extensibility.
Squeak? — the Smalltalk system we focus on in this paper —

ICreating and maintaining virtual machines for interpreted
languages is out of this paper’s scope. There is, however,
a strongly related case for the Squeak/Smalltalk virtual ma-
chine, which can be written in a subset of Smalltalk [13] and
only a thin, platform-specific part in C.

>The Squeak Programming System, http:/www.squeak.org

43

Figure 1: All three user interfaces (flitr: Squeak Shell, MVC, Morphic), which run in recent versions of Squeak. Each UI
can be activated and used simultaneously according to the programming task. Usually, each UI has a custom application

model and hence a custom set of interactive applications.

inherited and uses MVC in its first versions. Early achieve-
ments included a port of Morphic from Self to Squeak [17],
which entails the idea of direct manipulation and a tangible
user interface — properties that MVC is lacking. The process
of introducing Morphic to Squeak led eventually to the point
where MVC was not needed anymore to improve Morphic.
From then on, Morphic tools dominated all programming
activities. At the source code level, however, modularity was
suffering. Two fundamentally different user interfaces en-
tailed source code fragments that were scattered and tangled
across the system.

Almost 20 years after the introduction of Morphic, the
question about a shared abstraction for “arbitrary” user in-
terfaces arises. There has always been the idea of managing
running applications and user-specific content in a hierar-
chy of containers, called projects. MVC projects can embed
Morphic sub-projects and vice versa. There is one top-level
project that represents the primary user interface. Projects
govern the basic use of processes as unit of code execution.
Thus, Ul frameworks build on top of the project concept
and use existing primitives to handle user input and produce
graphical output. We believe that this abstraction has the
potential to form the programming interface for many kinds
of user interfaces. The question is:

What are the means and limitations to implement
and bootstrap user interfaces in self-supporting
programming systems such as Squeak/Smalltalk?

While one can add a layer on top of an existing UI [25], it
might be beneficial to rebuild all means from ground up. The
existing programming model might lack adaptability, addi-
tional dependencies might increase the maintenance overhead,
or platform resources might dictate performance constraints.
From a general research and prototyping perspective, we be-
lieve it is valuable to assess the UI bootstrapping capabilities
of live programming systems such as Squeak/Smalltalk. Here,
the overall goal is to keep on using the convenient tools from
the existing UI for code writing or debugging. We want to
avoid a freeze and lock-out of the live system.

We want to explore and discuss the existing facilities in
Squeak that support bootstrapping user interfaces in gen-
eral. For this, we implemented The Squeak Shell, which is a

text-buffer-based, command-line interface with an interactive
prompt and support for a simple application model. This ap-
proach resembles some characteristics of Bash, Emacs, Vim,
and other text-based environments. The Squeak Shell poses
an interesting contrast to the existing graphical interfaces in
Squeak (Figure 1).

In this paper, we make the following contributions:

e Documentation of important milestones during the evo-
lution of Squeak’s user interface since 1996

e Description of Squeak’s current core system as means
to bootstrap new user interfaces

e Design and implementation of a Squeak Shell to illus-
trate a possible approach using Morphic’s programming
tools

All details about the current Squeak refer to the trunk
build 16061 as of June 2016, which can be downloaded via
http://www.squeak.org.

We believe that, among many other capabilities,
Squeak is a valuable research and prototyping
platform for various kinds of user interfaces, in-
teraction models, programming paradigms, and
educational methods.

Section 2 provides more details about the historical evolu-
tion of user interfaces in Squeak. Then, section 3 describes
important details about the system out of the context of
user interfaces, including Squeak’s standard library, flexible
Smalltalk code execution, and the role of the virtual machine.
In section 4, we explain how to implement a shell-like Ul in
Squeak and discuss bootstrapping. We conclude our thoughts
in section 6.

2. THE HISTORY OF
SQUEAK'’S USER INTERFACE

The history of Squeak includes several milestones. While
the evolution of the virtual machine (i.e. platform support)
and its image format are very interesting in themselves, we
focus on the graphical interface in this paper. Many prior

44

Squeak versions are still available online? We explored these
sources and collected important milestones related to the
evolution of Squeak’s user interface.

After a brief description of the two existing user interfaces,
namely Model-View-Controller and Morphic, we show a
timeline with screenshots to briefly visualize the state of the
interface at that time.

2.1 Model-View-Controller

The MVC framework was introduced with Smalltalk-80 [4].
It separates code for handling data (model), user input (con-
troller), and graphical representation (view). Typically, there
are interdependent pairs of controller and view. By employ-
ing an observer pattern [9], models are decoupled from views
and controllers and hence can be reused across the system.
There is an extensive documentation with examples for MVC
in “Inside Smalltalk - Volume II” by LaRonde et al. [16]

Interestingly, there are no convenient means to schedule
(periodic) activities other than forking processes, which re-
quires the programmer to take care of using appropriate lock-
ing and synchronization for data structures. Only the window
with the current input focus executes code; other windows
freeze by default until re-activated.

There are more recent frameworks for graphical user in-
terfaces, which are inspired by the traditional MVC, such as
model-view-presenter* and Qt’s model/view architecture?

The UI framework in Smalltalk-76 and -78 was also based
on a desktop metaphor with windows. Every graphical object
was a “window,” even a star-shaped image. Nevertheless,
MVC was especially designed for Smalltalk-80 to represent
an extensible Ul framework for many applications outside
the research context.

2.2 Morphic “Version 2’

Morphic is an approach to introduce directness and liveness
to a live programming environment. Direct manipulation
interfaces [12] are considered to be user-friendly and efficient
by visualizing objects and tasks interactively on screen. These
interfaces are typically compared to command-line interfaces.

The first implementation of Morphic was for the second
user interface in the Self environment [19]. The second im-
plementation was for Squeak to replace MVC [17]. The third
implementation was in JavaScript for the LivelyKernel [14].

In Squeak’s Morphic, there is one Ul process, which car-
ries out the following activities in an endless loop: (1) query
and process keyboard and mouse events, (2) run scheduled
activities, (3) update display screen. Morphic is hence an
implementation of the traditional “main loop with event han-
dlers” pattern, which simplifies UI programming by executing
all code in a single thread.

3http://files.squeak.org/, accessed on Aug 4, 2016
“http://martinfowler.com/eaaDev/uiArchs.html,
accessed on Mar 30, 2016
>http:/doc.qt.io/gt-5.6/model-view-programming.html,
accessed on Mar 30, 2016

2.3 Timeline

In addition to the brief overview, we present the number of
classes, number of methods, and lines of code as a measure
of complexity and effort attributed to the user interface.

1996, Squeak 1.0 Using Apple’s Smalltalk-80, a new in-
terpreter is written written in a subset of Smalltalk
and translated into C code” [13] Only a thin platform-
specific layer needs to be written and maintained in C.
The Smalltalk-80 library represents the code base for
Squeak, including MVC as the graphical user interface.
Soon after the initial bootstrapping process, subsequent
versions of the interpreter were developed from within
Squeak. The idea of projects as means of managing sys-
tem content could be retained from Smalltalk-80 [16]. —
Squeak’s pioneers were eager to implement Self’s Mor-
phic [19, 27] and Fabrik [15] as an improvement over
MVC to provide a direct manipulation user interface.

1997, Squeak 1.19 First appearance of Morphic-related code
for demonstration, as such the first signs of what will
become the second incarnation of Morphic.

MVC 107 classes 1520 methods 12454 LOC
Morphic 53 classes 981 methods 7234 LOC
Other 210 classes 5769 methods 60750 LOC

1998, Squeak 1.31 It is possible to open a Morphic world in
an MVC view (window) to play around with morphs
and the halo concept. A rudimentary full-screen variant
is available to illustrate the use of morphs “all the way
down.” However, Morphic tools are very primitive and
suggest strong dependencies on MVC.

MVC 109 classes 1689 methods 13666 LOC
Morphic 125 classes 2231 methods 16993 LOC
Other 262 classes 7727 methods 82741 LOC

®The initial version of Squeak is not available. Our informa-
tion is based on Back to the Future: The Story of Squeak [13].
"The interpreter of Apple’s Smalltalk-80 was written in
68020 assembly.

45

1998, Squeak 2.0 The concept of projects was extended to

support Morphic, which means that a full-screen Mor-
phic project (resp. world) can be started to hide the
MVC interface from the user. There can be projects
within projects, worlds within worlds. Regarding a mod-
ular system structure, there is the idea of discarding all
source code related to MVC or Morphic. However,
that was not working yet. Then, there is the idea of
pluggable views and morphs, which means to have con-
figurable callbacks (e.g. getTextSelector) involving
message sends via #perform:. These means of reusing
models for both MVC and Morphic, however, entailed
hard-wired construction methods in model classes such
as Browser and Debugger.

MVC 65 classes 1463 methods 12983 LOC
Morphic 157 classes 3544 methods 26222 LOC
Other 287 classes 8385 methods 89511 LOC

1999, Squeak 2.5 A Morphic project can be used as the top-

level project. Discarding all MVC sources works now.
Projects can also be exported to the file system to share
not only code but also the whole workspace, filled with
open tools and other objects.

MVC 115 classes 2610 methods 23149 LOC
Morphic 218 classes 5162 methods 39334 LOC
Other 674 classes 14284 methods 152699 LOC

2001, Squeak 3.0 Images start with a Morphic project out-

of-the-box. This means that Morphic is presented as
the primary GUI framework for application developers.
In contrast to MVC, there are many examples included
to illustrate the flexibility of Morphic. Projects were
used to structure these examples.

MVC 52 classes 854 methods 7404 LOC
Morphic 395 classes 9270 methods 71751 LOC
Tools 66 classes 1766 methods 17809 LOC
Other 997 classes 22008 methods 232472 LOC

2004, meanwhile The idea of Tweak is born, which is a new

viewing architecture and asynchronous events frame-
work. It claims to combine ideas from Morphic and
MVC8 While it has been successfully used in the Cro-
quet project [23], development stopped in 20127

Tweak 565 classes 10252 methods 70638 LOC
Croquet 148 classes 3236 methods 26101 LOC
(Source code of Croquet 1.0.25)

2005, unpublished The idea of Tool Builder was born!® Ma-

jor parts of the code for system tools, such as code
browser and debugger, should be reusable for both
Morphic and MVC. This separation cleans up model
code and improves the modular architecture. Still,
Tool Builder is not part of the contemporary release
of Squeak 3.8.

2008, Squeak 3.9 The Tool Builder released and used. There

is a builder [9] for Morphic and a builder for MVC.
Many system tools were updated such as code browser,
change sorter, debugger, process browser, and test run-
ner. — There are many Morphic examples, which got
separated into the category “MorphicExtras” thus re-
ducing the Morphic footprint.

MVC 67 classes 1295 methods 10709 LOC
Morphic 184 classes 7001 methods 54865 LOC
Tools 58 classes 1845 methods 19619 LOC
Other 1663 classes 34760 methods 289046 LOC

8http://web.archive.org/web/20110728001441/http:
/tweakproject.org/
http://www.squeaksource.com/TweakCore.html,
accessed on Feb 16, 2016
Ohttp://www.squeaksource.com/ToolBuilder.html,
accessed on Feb 16, 2016

46

2010, Squeak 4.1 There are now two kinds of projects for
Morphic and MVC instead of tailoring the project con-
cept to Morphic only. Regarding modularity, this sets
the course for more project kinds in the future. The
fully modular MVC can be removed and reloaded.

MVC 64 classes 1447 methods 12789 LOC
Morphic 186 classes 7233 methods 57809 LOC
Tools 61 classes 2213 methods 20315 LOC
Other 1707 classes 34451 methods 285419 LOC

2015, Squeak 5.0 There were many improvements towards
a modular system structure, which includes untangling
MV C-specific and Morphic-specific code.

MVC 67 classes 1563 methods 13212 LOC
Morphic 204 classes 7952 methods 61682 LOC
Tools 63 classes 2492 methods 22879 LOC
Other 1929 classes 38955 methods 317805 LOC

With the addition of Morphic to Squeak, the community
recognized and separated common and specialized modules.
This includes moving code from the MVC part to the core
system. Then, the raise of Morphic entailed many examples,
which obfuscated Morphic’s core. It is an ongoing process to
clean-up the system and improve the modular structure.

3. SQUEAK WITHOUT
ITS USER INTERFACE

When the task is to implement a new user interface for a
programming system like Squeak, one has to become familiar
with means of everything besides such an interface. For one
thing, there is the Smalltalk programming language and its
semantics. Any program consists of objects that exchange
messages to collaborate, hopefully producing the intended
behavior. Application domains cover multimedia, games, sim-
ulation, and many more. Here is an example of the Smalltalk
syntax:!!

"Smalltalk Syntax on a Postcard:
http://c2.com/cgi/wiki?SmalltalkSyntaxInaPostcard

exampleWithNumber: x
"A method that illustrates every part of Smalltalk method
syntax except primitives. It has unary, binary, and keyboard
messages, declares arguments and temporaries, accesses
a global variable (but not an instance variable), uses literals
(array, character, symbol, string, integer, float), uses the
pseudo variables true, false, nil, self, and super, and has
sequence, assignment, return and cascade. It has both zero
argument and one argument blocks."
Iy |
true & false not & (nil isNil) ifFalse: [self
halt].

y := self size + super size.
#(%$a #a "a" 1 1.0) do: [:each |
Transcript

show: (each class name);
show: ’.’1].
AX<Yy

This source code still compiles and runs in recent Squeak
releases. In the following, we take a closer look at Squeak’s
standard library, its code execution model, and platform-
specific functionality in the virtual machine.

3.1 The Standard Library

Everything is an object: numbers, files, sounds, or even
classes. Squeak applications can build on a solid foundation
of modules, which exhibit the Smalltalk language with its
objects-and-messages metaphor in many domains. Many
parts of the library are still in harmony with the original
documentation of Smalltalk-80 [11], especially the topics
about compilation, graphics, and collections.

Classes are organized in system categories. Each category
has a common prefix to document and structure functionality:

Kernel-* Code compilation, class (hierarchy) (re-)definition,
basic exception handling, process scheduling and syn-
chronization, user input events, primitive types such as
numbers and boolean values.

Chronology-* Everything related to time, time spans, dura-
tions, time stamps, etc.

Collections-* Everything related to working with multiple
objects such as arrays, strings, streams, and dictionaries.

Graphics-* Everything related to graphical output, includes
support for font rendering, drawing rectangles, and pro-
cessing various image encodings such as PNG, JPG,
and GIF.

Files-* Accessing the local file system using streams. Listing
and navigating folders.

Network-* Using sockets to fetch network resources. In-
cludes support for UDP, TCP, HTTP!? and HTTPS 3

Sound-* Managing audible output and reading various sound
file formats. Includes support for FM, WAVE, and
MIDI.

System-* Code change notification, object events, weak ar-
rays and finalization, object serialization, concept of
projects.

12WebClient, which is now part of the Squeak trunk:
http://ss3.gemstone.com/ss/WebClient.html
13SqueakSSL
https://github.com/squeak-smalltalk/squeakssl|

47

Smalltalk has a powerful collection interface, which sup-
ports working with lists of arbitrary objects. The central
structure is a fixed-size Array on which other kinds of col-
lections build. For example, OrderedCollection is variably
sized by managing growth with an internal array. Dictionary
hashes its contents to indexes internally used to access an ar-
ray. There is a pattern to convert between kinds of collections:
“asKind”. Examples include asOrderedCollection, asSet,
and asArray. Having this, a temporary set representation can
be used to remove duplicates. Lists can easily expressed as
literal arrays (#()) or object arrays ({}):

"Filter odd numbers out."
#(1 2 3 4) select: [:ea | ea even].

"Map character to ASCII value."

{$a. $b. $c} collect: [:ea | ea asInteger]
"lterate."

#(tree flower house) do:

The collection interface includes support for streams. At
the platform level, contents from file or socket are usually pro-
cessed as streams, which may be infinitely big. At the object
level, streams work on top of collections to provide contents,
which have a specific size!* For example, the construction of
longer strings benefit from the stream interface in terms of
memory usage; while “(’Hello’, ’Again’, ’World’)” in-
volves five instances of String, streams can reduce it to four
instances: >

[:ea |

String streamContents: [:stream |
stream nextPutAll: ’Hello’;
nextPutAll: ’Again’;
nextPutAll: ’'World’].

Finally, there are generators to complement collections
and streams. When iterating over a computed list of objects,
there is no need to create that list in the first place. A common
pattern is to provide a block, which represents the processing
step, to the object that performs the computation. If this
processing step cannot be accomplished at once, generators
help by providing a stream interface for the content creation.
Hence, there is still no need to create a temporary collection:

"Example taken from Generator class comment."
| generator |
generator := Generator on:
Integer
primesUpTo: 100
do: [:prime | g yield: prime]].

[:g |

[generator atEnd]
whileFalse: [Transcript show: generator next].

Here, the generator yields prime numbers up to 100, which
will be printed on the transcript. Traditional “printf()-debugging’
or logging can be accomplished by writing strings, numbers,
or boolean values on the transcript. For complex objects,
programmers have to define a descriptive string representa-
tion. In Squeak’s Morphic, there is a tool called “Transcript”,
which displays the latest output in a window. If the Ul is
currently not able to display such information, that output

s

4“Unless repeatedly modified by another process.

1521 — 1 compared with z+ 1, ignoring the collection’s growth
behavior

can be redirected to stdout or stderr. Any Linux shell or
the Windows command-line prompt will then perform the
display.

Object communication can be decoupled with several ex-
isting observer patterns [9]. First, there is the change/update
mechanism, heavily used in MVC to decouple models from
views. Objects have a list of dependents, who get notified
on each “self changed: #reason” by calling “dependent
update: #reason” synchronously. Then, there is a newer
object events system, which allows for arbitrary callbacks
to adapt to an objects interface. The dispatch can happen
once at connection time and not repeatedly at notification
time: “subject when: #reason send: #dueToReason to:
observer”. Finally, there are system change notifications,
which allow tools to react to source code modifications.

In addition to dynamic object behavior (resp. run-time),
programmers can add rules that affect the compile-time using
method pragmas. These annotations remain close to the
source code level, but can easily be processed at run-time
because methods are instances of CompiledMethod and hence
regular objects:

SoundService >> soundEnabled
<preference: ’Enable_sound’
category: ’'media’
description: ’'If_.false,.sound.is.disabled.’
type: #Boolean>

A SoundEnabled ifNil: [true]

Squeak uses such annotations, for example, to store prefer-
ences close to the affected parts in the code to support version
control!® The pragma syntax resembles the regular keyword
message pattern. Arguments can be all literals such as strings,
symbols, boolean values, and numbers.

Having this, user interfaces can provide flexible object
communication protocols on top of the existing ones. There
are objects “all the way down” to low-level tasks such as file
access, there are data structures to work with collections of
objects, and there are observer patterns to coordinate object-
oriented behaviors.

3.2 Managing Code Execution in Squeak

User interface frameworks manage code execution to a cer-
tain degree by specifying the rules of querying input events,
drawing to the screen, and accessing data. In general, frame-
works employ the Hollywood Principle: “Don’t call us, we’ll
call you.” Application programmers can write source code
without bothering about specific execution semantics. In
Squeak/Smalltalk, objects collaborate via message sends,
which are carried out in processes!” as the unit of code execu-
tion and scheduling. The way processes are used influences
the programming model, the impact of (programming) errors,
and the overall responsiveness when facing long running
computations or I/O lags (such as network requests).

16Squeak’s version control does not log objects in general but
only source code and class definitions.

"Tn the domain of operating systems, the unit of execution
is called thread and processes represent data structures to
manage memory, file handles, or access privileges. In Squeak,
threads are called processes.

48

Squeak’s virtual machine provides green threads, which
share one thread at the level of the operating system and CPU.
While this can be a disadvantage for computation-intensive
operations, it still promotes the possibility of designing re-
sponsive user interfaces. By default, Squeak’s processes
schedule in a cooperative fashion. When the current process
yields, the next scheduled process becomes active and the
current one goes at the end of the line:

Processor yield. "Next process at same priority will run."

Additionally, there are priorities and support for interruption
by means of semaphores and other low-level synchroniza-
tion objects. For each priority, there is a list of runnable
processes. A process with a higher priority can interrupt a
running process with a lower priority. An example of trigger-
ing an interruption is the use of delays, which is implemented
using semaphores:

(Delay forSeconds: 2) wait. "Another process can run."

Here after 2 seconds, the process that executed that code
becomes active again unless a higher-priority process is run-
ning or another process at the same priority is running. In
the latter case, one will have to wait for that process to yield.
Squeak defines the following process priorities by name:

e Timing Priority (80)
High I/O Priority (70)
Low I/O Priority (60)
User Interrupt Priority (50)
User Scheduling Priority (40)
User Background Priority (30)
System Background Priority (20)

There are usually 80 priority levels but this can be changed
if no running or waiting processes are affected. User interface
processes are expected to schedule at 40. This holds for the
Morphic Ul process and all MVC controller processes. With-
out the user interface, Squeak has the following processes
running:

Timer Interrupt Watcher (80) Handles timing events such
as delays in processes.

Low Space Watcher (60) Raises a warning if there is not
much free memory left. Should prevent VM crashes.
Process usually sleeps until triggered by the VM using
a special semaphore.

Event Tickler (60) If no other process fetches user input
events frequently, do it in this process. Required for
user-controlled process interruption via the key combi-
nation [CMD]+[.]

User Interrupt Watcher (60) Waits for a special semaphore,
signaled by the VM, that indicates user-controlled pro-
cess interruption via [CMD]+[.] Works for processes
below priority 60.

WeakArray Finalization Process (50) Waits for a special
semaphore, signaled by the VM, to call finalization
routines for registered weak structures after garbage
collection.

Idle Process (10) Relinquish CPU time to the operating sys-
tem.

Other process scheduling algorithms can be implemented
as a high-priority, delay-based process or as a low-priority,
non-preemptive process. Tweak and Croquet followed the
latter approach. Any custom process (scheduler) can ask
Squeak’s scheduler about and fiddle around with all (runnable)
processes according to any desired set of rules. Such rules
known from other systems include quantum slicing, priority
boosting, or putting a runnable process to the front of its
queue. If there is additional information required — such as
run duration so far and time of last file I/O — one can intercept
the respective message sends to collect and provide that in-
formation manually. Processes are regular Smalltalk objects,
whose classes can be specialized and new state or behavior
be added:

(MySpecialProcess
forContext: ["Some computation ..."] asContext
priority: 40)
resume.

Here is a very simple example of an additional scheduling
process that runs at priority 70 and wakes up every 100 mil-
liseconds to check whether the current process at priority 40
had changed or is still the same. If so, it will be re-scheduled
to give the next process at 40 a chance to run:

[[| list current previous |
(Delay forMilliseconds: 100) wait.

list := Processor waitingProcessesAt: 40.
current := list ifEmpty: [nil]

ifNotEmpty: [:1 | 1 first].
(current notNil and: [current == previous])

ifTrue: [list removeFirst;
addLast: current].
previous := current.
] repeat] forkAt: 70.

Note that processes will never be preempted by processes
that run at lower priorities. With this additional time slicing
rule, one can safely fork a process at the usual Ul priority
(40) while the system stays responsive:

[["Some heavy computation ..."] repeat] forkAt: 40.

Otherwise, the user would have to interrupt the process
manually by pressing [CMD]+[.] to make the user interface
responsive again. Of course, the user can always execute such
source code at lower priorities. If feasible, the computation
could also yield its process frequently.

Programming mistakes can happen. If an object does not
understand a message, the VM will call #doesNotUnderstand:
on that object, providing an objectified version of the mes-
sage send with all its arguments. By default, this situa-
tion is mapped to Squeak’s exception handling mechanism
by raising a MessageNotUnderstood exception. There are
other cases where exceptions can occur such as ZeroDivide,
EndOfStream, KeyNotFound, and NonBooleanReceiver. Ex-
ceptions can be handled by executing the suspicious code in
a block:

[7/0. 3+3]
on: ZeroDivide
do: [:ex | ex resume].

49

Without resume, that expression above would return nil
and not 6. If not handled by user code, the control flow will
be redirected to the debugger where the buggy process will
be suspended. The UI framework may has to spawn a new
process to keep itself responsive to user input. In Morphic,
for example, there is only one UI process, which has to be
restarted if exceptions occur in it. In MVC, every window
creates its own process when activated and hence debugger
windows will not have to consider where the buggy process
originates3

Very long or (accidentally) endless loops can render the
user interface unresponsive. If these computations are carried
out below a certain priority level (usually 60), users can in-
terrupt them by hitting [CMD]+[.]. Such interruptions will
spawn debuggers where users can easily resume the respec-
tive computation. There is no automatic detection of endless
recursion or loops, although one could easily implement one
with a high-priority process as described above.

Most of Squeak’s data structures are not thread-safe (resp.
“process-safe”). Applications can use objects for access pro-
tection such as Semaphore, Monitor, and Mutex — which be-
have as commonly expected. There is a shared data struc-
ture called SharedQueue, which is protected by a semaphore.
Squeak’s Morphic, for example, uses shared queues to inject
code snippets into the main loop or to query objects repre-
senting user input events. The scarcity of protection against
concurrent access is common in comparable frameworks
because precautionary checks increase maintenance effort
and add performance overhead — many applications do not
need that anyway. Regarding consequences of missing access
protection, the VM will usually'® not suspend but raise excep-
tions such as MessageNotUnderstood, NonBooleanReceiver,
and BlockCannotReturn — which may appear arbitrary to the
programmer but remain “debuggable.”

Thread-safe operations include:

Creating instances of classes

Creating and scheduling process delays

Creating, resuming, suspending, terminating processes
Working with weak references (resp. weak dependents
and weak registries)

Fetching and processing user input events

e Any use of access protection objects and such that make
use of them like SharedQueue does

Programmers can insert breakpoints into the code by rais-
ing a dedicated exception called Halt. The usual rules of
exception handling apply here: if not handled, a debugger
will be raised. Although programmers have to modify source
code to add such breakpoints, they do not have to learn a new
concept:

3When resuming processes in MVC, debuggers have to acti-
vate the corresponding controller object if any. So, debuggers
have to keep a reference to that controller.

Tt is possible to manipulate special objects in certain
ways, which disagree with the assumptions about regu-
lar Smalltalk code. Examples include “SmallInteger
removeSelectorSilently: #>" and “true become: false”.
Then the virtual machine can crash or suspend.

[self halt]
on: Halt
do: [:ex | "No breakpoints, please."].

Having this, user interface frameworks have many possi-
bilities to schedule, execute, and debug Smalltalk code. Tra-
ditional patterns, such as one main loop plus event handlers,
can easily be implemented. Also advanced script schedulers,
such as found in Tweak, benefit from the simple but powerful,
object-oriented abstractions in terms of processes, message
sends, and method contexts (resp. stack frames).

3.3 Talking to the Squeak VM

Eventually, Ul frameworks have to perform I/O opera-
tions such as reading keyboard input and drawing on screen.
The platform-independence of Smalltalk code results from
platform-specific VMs, which map and expose low-level
functionality provided by the operating system to high-level
Smalltalk objects. Graphical output, for example, is managed
by a Smalltalk object that represents video memory. All pixel-
based drawing operations are mapped to system resources,
such as the DirectX protocol in Windows or the X11 protocol
in Linux.

Every Smalltalk program makes primitive calls into the
VM: either when performing platform-specific I/O or for
improving code execution speed with a piece of specialized
C code [6][13][7]. For example, there is VM support to speed
up index wrapping when accessing an Array:

atWrap: index
"Optimized to go through the primitive if possible"
<primitive: 60>
A self at: index - 1 \\ self size + 1

If the primitive call fails, the fall-back code will be exe-
cuted as shown above. Otherwise, that code is just a readable
explanation of what should happen in the VM. Primitive calls
can also address plugins, which represent an important exten-
sion point in the VM. For example, all drawing operations
end up in the BitB1tPlugin:

copyBitsAgain
"Primitive. See BitBIt copyBits, also a Primitive. Essential.
See Object documentation whatlsAPrimitive."
<primitive: ’primitiveCopyBits’
module: ’BitBltPlugin’>
self primitiveFailed.

Plugins can also be written in Smalltalk? to be compiled
into C. They do not have to capture platform-specific behavior
but can just contribute to the VM’s modular architecture,
like the BitB1tPlugin does. If not critical to performance
or security, it is common practice to implement as much
functionality in Smalltalk as possible and only little C code
to foster cross-platform support. Other examples for plugins
include:

FilePlugin Accessing files and folders. Squeak uses it to
write code changes and the object memory to disk.

20The subset of Smalltalk that can actually be translated is
commonly called “Slang”.

50

SocketPlugin Accessing local and remote network resources.
Squeak uses it to receive code updates.

JoystickTabletPlugin Additional input devices such as joy-
sticks and game pads.

SoundPlugin Synthesize sound in Squeak and play the sam-
ples on a sound card.

MIDIPlugin Process MIDI files in Squeak while talking to
MIDI devices.

SqueakSSL Helps to establish secure connections to net-
work resources. Used to establish HTTPS connections.

SqueakFFIPrims “Foreign function interface” (FFI) to use
shared libraries that do not comply with the VM’s plu-
gin interface.

OSProcessPlugin Written in Smalltalk, provides access to
OS inter-process communication such as pipes. Sup-
ports running shell commands and executing other OS
processes. Thus, enables multi-programming by spawn-
ing more VMs and providing a communication proto-
col.

There are 8192! methods that do primitive calls, from
which 372 do not call into plugins but only the VM core.
There are 51 168 methods in Squeak and this is hence only a
small fraction of 0.016%. Most primitive calls can be found
in SmalltalkImage (43), Object (24), SmallFloat64 (20),
ContextPart (19), and SmallInteger (19). SmalltalkImage
uses primitives to read and write VM parameters, partially
manage garbage collection, or snapshot the object memory
to disk. Object provides a meta protocol to explicitly trig-
ger message sends (i.e. #perform:with:, #executeMethod:),
clone objects, access classes, or manipulate instance vari-
ables. SmallInteger uses primitives to speed-up arithmetic
operations such as add, multiply, and compare.

In the context of primitive calls, UI frameworks have to
fetch user input events frequently. In recent VMs, there
is primitive 94, which fills an array with numeric values.
These values encode the type — mouse or keyboard —, a time
stamp, and type-specific payload such as screen coordinates
for a mouse click. Then there is Smalltalk code to create
event objects from this low-level representation. For example,
the following array encodes a mouse event at roughly 22
minutes (1 334 728 milliseconds) after image start at screen
coordinates (377, 328) where the left mouse button is hold:

#(1 1334728 377 328 4 0 1 0)

For Morphic applications, programmers can work with an in-

stance of MouseEvent and check #position and #redButtonPressed.

At the time of writing, however, such object-oriented event
objects are specific to the Morphic framework.

Also in the context of primitive calls, graphical UI frame-
works want to draw something on the screen while the screen
should never flicker. Video memory is represented as a spe-
cial Form instance, which is a two-dimensional, pixel-based
surface to write on and read from. The primitive 102 will tell
the VM about that object, which is also stored as a global
variable in Display in Squeak. The primitive 106 will reveal
the host window resolution and should be called frequently to

21Some methods call the same primitives. No quick returns.

detect resizing. The primitive 126 will tell the VM whether to
forward all calls directly to the screen or to defer the updates
until primitive 127 is called. From Squeak’s perspective,
this concept resembles double buffering but implementation
details can vary between platforms.

There is usually one host window per VM in the operating
system. This is no limitation in general but seems to be a
historical design decision because the Smalltalk system could
replace the whole operating system programming and user
interface [4]. It is feasible to extend the VM with plugins to
support multiple host windows??

Having this, the VM’s plugin architecture, as well as the
FFI plugin itself, provide simple means to add advanced
hardware support. Elaborate visualizations may benefit from
hardware-accelerated graphics. Exotic input devices may
provide additional parameters. UI frameworks can consider
these possibilities in their design and balance the trade-offs
with platform lock-in.

4. HOW TO CREATE
THE SQUEAK SHELL

The focus of this paper is to illustrate the simplicity of
adding a new UI framework to Squeak from within an existing
framework — Morphic in this case. Therefore, we build on the
details of the previous sections and explain how to add a shell
interface to Squeak, which will be a third one next to Morphic
and MVC. Instead of designing the Squeak Shell as, for
example, a Morphic application, we want to explore Squeak’s
core facilities. Due to its simplicity, such a shell interface
is a great example to highlight the existing UI patterns that
many other Uls would also have to employ. These patterns
include project, user interface manager, application registry,
and ool builder as well as interactive debugging.

While creating a new Ul for and from within Squeak, our
goal is to take advantage of such a self-supporting system.
We want to keep using the existing tools while working on
their next generation. We want to avoid a lock-out and the
domination of external tools. At first, our new UI will sup-
port code writing, running, and debugging. So, these first
applications will be programming tools, which represent the
foundation of an application model. Then, users are enabled
to create new content. We evaluate and discuss bootstrapping
at the end of this section.

4.1 Squeak’s Common
User Interface Patterns

Projects are entry points into user interface frameworks.
When entering a project, it should spawn initial processes
to query input events and draw the state of things on screen
in an endless loop. Projects need to keep track of their vital
processes to re-spawn them in case of an exception. There are
deferred Ul messages, which are usually objects stored in a
SharedQueue to call #value on if there is enough time left in
a cycle - improving responsiveness. Projects form a hierarchy
and support users to organize their contents (Figure 2). At the

22Project “Areithfa Ffenestri” http:/wiki.squeak.org/squeak/
3862, accessed on Mar 31, 2016

o1

Y Projects Tools Apps Extras Windows Help Unnamed20 1850 [

Multimedia -
Programming

Click here to enter the
© @) projectnamed
Misc”

Figure 2: Morphic keeps track of the project hierarchy
with project windows. Users can enter a project with a
click on the window. Closing windows means discarding
projects.

time of writing, background projects sleep and are requested
to terminate their processes when entering another project.
Every project has a User Interface Manager, which dis-
patches common dialog-based tasks such as asking to con-
firm an operation, indicating progress, requesting text in-
put, and choosing from a list of alternatives. In Morphic,
the MorphicUIManager creates, configures, and opens spe-
cific morphs for that. The UI Manager is not meant to be
modified by applications but used to provide a consistent
look-and-feel for such common tasks. For example, to ask a
yes/no-question, application code would call this:

answer := Project current uiManager
confirm: ’Do.you.like_chocolate?’
title: ’Survey’.

Survey

Do you like chocolate?

Squeak has Application Registries, which represent a con-
venient interface for more complex tasks that can be carried
out by various applications. There is the registry MailSender
to send emails, SoundService to play sounds, WebBrowser to
open Web sites, or ToolSet to perform programming tasks.
Two similar applications would register and the user has to
choose a default. Having this, Squeak is prepared for many
kinds of activities, not just programming. Depending on the
application model, new kinds of projects can register their
own applications. In the case of Morphic and MVC, the tool
set with all programming tools is shared by employing an
additional builder pattern [9].

"Inspect the state of the current project.”
ToolSet inspect: Project current.

Tool Builders construct tools based on specs. In Squeak,
tools usually consist of one window with several lists, text

configure,
display

SgshModel =
L

process events,
update display

Process

create,)
terminate write

inspect, inform,
browse, ... confirm, ...

Figure 3: The Squeak Shell architecture. Gray boxes
are singletons/globals, accessible from application code.
Dashed boxes are I/O paths into the VM. Note that this
is no actual MVC but a similar pattern.

[nil])>3+4
7

[nil]>!Morph new

[a Morph(34...etc...]>self color

Color blue

[a Morph(34...etc...]>self inspect

bounds: @0 corner: 56@40

owner: nil

submorphs: #()

fullBounds: nil

color: Color blue

lextension: nil

SqshToolSet

[a Morph(34.. .etc...]>!!

[nil]>SystemNavigation default alllmplementorsOf: #collect:

an OrderedCollection(a MethodReference Collection >> #collect: a MethodReference DependentsArray >
> #collect: a MethodReference Dictionary >> #collect: a MethodReference Environment >> #collect: a
MethodReference Heap >> #collect: a MethodReference Interval >> #collect: a MethodReference Matri
x >> #collect: a MethodReference OrderedCollection >> #collect: a MethodReference Path >> #collect
: a MethodReference PluggableDictionary >> #collect: a MethodReference SequenceableCollection >> #
collect: a MethodReference Set >> #collect: a MethodReference SortedCollection >> #collect: a Meth
odRef;rence Stream >> #collect: a MethodReference WeakSet >> #collect:)

[nil)

Y
Lines are Instances of ValueHolder

Y
Line with breaks

Prompt

N

Figure 4: In the Squeak Shell, every line is an instance of
ValueHolder, which supports the change/update observer
pattern to notify the view of updates.

fields, and buttons. A tool’s model class implements #buildWith:,

which gets called with a concrete builder as argument. Builders
provide specs and means to construct the real widgets. Specs
store abstract information such as callbacks, tool tips, and
layout hints. There are composite specs (windows or panels)
managing children and normal widget specs (buttons, lists,
etc.) being the children. Communication between the tool’s
model and the widgets is decoupled with the change/update
observer pattern as described in the previous sections. Note
that, for a new kind of project, it is not necessary to imple-
ment a tool builder because programming tasks first have
to go through the current tool set, which is an application
registry and can already be project-specific.

Given the global accessibility of projects, application reg-
istries, and tool builders, working on a new UI framework
can only partially happen from within an existing Ul frame-
work. Programmers can try out only some aspects, such as a
new main loop, in an other UI’s process. There will be the
point where a new project has to be entered and its process to
be spawned — while the current process terminates. Then if
not carefully thought through, lock-out of Squeak is possible.
However, a locked image will not be stored on disk and hence
programmers can safely resume from the last checkpoint.

4.2 Squeak Shell Architecture

The Squeak Shell has a controller, a model, and a view.
We hence follow an MVC-like pattern and separate input
processing, information storage, and text display as depicted
in Figure 3. The model is, first of all, a buffer for text lines,

52

which are objects>® whose contents are tracked and whose
changes are immediately displayed. Then, the model stores
the current prompt, previous commands, the text cursor posi-
tion, and a list of variable bindings to support code execution.
The view knows the model to show all lines in a list. It adds
support for line wrapping if the screen is not wide enough
as depicted in Figure 4. It is configurable with a background
color and a default text font and it supports vertical scrolling.
The controller dispatches user input, which is basically text
input, cursor navigation, and command execution. It knows
the model to, for example, update the prompt, and it knows
the view to trigger redraw on screen.

If the user enters the expression “3+4” followed by [Return],

that expression will be printed on the prompt, the result will
be printed on the next line, and an empty prompt will appear
as a third line (see upper part in Figure 4). There are four key
strokes, which result in two new lines in the buffer, an empty
prompt to be filled again, and about four screen updates be-
tween. Besides the model triggering screen updates lazily,
the shell frequently suspends its main process to ensure a
minimal cycle duration of 20 milliseconds to save CPU time.

The Squeak Shell evaluates code synchronously. It works
like a “do it” in a Smalltalk workspace known from MVC and
Morphic. The model holds a dictionary with bindings, which
are accessed through the controller. The controller is notified
during compilation of any issues such as missing bindings.
Here is how the controller evaluates code :

result := Compiler new
evaluate: expression "from the prompt"
in: self model context "temps, not used"
to: self model receiver "resolve 'self™
notifying: self "provides more bindings"
ifFail: [* self] "parse/compile errors"
logged: true. "log expression in changes"

After successfully parsing and compiling the expression,
code evaluation can still raise an exception. There is no
generic exception handler in the Squeak Shell. Instead, we
attach to Squeak’s debugger interface, which is used for all
unhandled exceptions as described in the previous sections.
Yet, the shell has no interactive debugging support but only
displays the stack and presents an empty prompt.

In the shell, all programming tools are quite primitive.
While transcript output and progress display work as ex-
pected, usually interactive tools produce only static text out-
put. For example, the object inspector lists a string represen-
tation of all instance variables (see middle part in Figure 4).
Nevertheless, there is only little code required to write and
integrate such primitive Ul managers and tool sets. Being
able to evaluate code, users could change classes, compile
methods, and evolve the system. Anyhow, this is far from
being convenient.

The next steps include the elaboration of the application
model. Similar to MVC, multiple controllers could exist side-
by-side or be nested. For example, opening a text editor from

23Squeak’s class ValueHolder is a mini model that automat-
ically notifies its dependents - here, the shell model - about
changes.

the shell could be realized by adding a sub-controller to the
shell controller. The tool set and the UI manager could be
extend to provide interactive tools and dialogs. This simple
design of the Squeak Shell is arguably not very restrictive and
open for extension. There could also be a custom tool builder
to reuse existing tool models, which are already shared among
MVC and Morphic. The Squeak platform itself expected only
the creation of three classes: SqshProject, SqgshToolSet, and
SqgshUIManager.

4.3 Step by Step

Programmers should benefit from the existing UI frame-
work as much as possible while creating a new one. This
includes writing code, running code, testing and debugging
code. Back in 1998 in Squeak 1.31, an early version of Mor-
phic was rendered in an MVC view. Programmers could
try out the new features without having to leave their famil-
iar context. While it might be troublesome embedding two
fundamentally different Ul frameworks in each others “in-
formation containers,” running the main loop inside another
main loop might be sufficient to test the basics.

We suggest the following procedure to implement the
Squeak Shell from within Morphic. The A\ denotes a strong
probability to freeze or lock the image by accident:

1. Create and test classes for model and view.

2. Create controller and run event/draw loop on top of the
Morphic main loop.

3. Handle escape key in controller to return to the previous
(Morphic) project.

4. ASpawn the shell’s main loop in a custom project’s
process.

5. AlImplement debugger pattern; print the stack and
restart the process if needed.

6. Improve programming tools, add applications.

While the steps 1, 2, 3, and 6 remain debuggable with
Morphic tools, entering a custom project and interfacing the
debugger mechanism might result in an image freeze (A).
Morphic’s debugging facilities will only help when the cur-
rent project and tool set will invoke Morphic’s project code to
respawn the Ul process to keep the Ul responsive. If an unhan-
dled exception ends up in an unimplemented interface and the
current project raises the MessageNotUnderstood error, the
exception mechanism will recursively call itself — lock-out.
Squeak already has a mini shell for primitive error handling,
which can revert the last code change, but project-specific
code has to make use of it. Simplified, an implementation of
the debugger pattern looks like this:

debug: process context: context message: string
"Keep Ul responsive by respawning process.'
Project current
spawnNewProcessIfThisIsUI: process.
"Schedule debugging for the next cycle."
Project current addDeferredUIMessage: [
["Do something with the buggy process."
Project current uiManager
inform: string;
inform: context stack printString.

53

process terminate.
] on: Error
do: [:ex |
"If the project’s debugger fails..."
self primitiveError: string]].
"This process will be handled as above."
process suspend.

This is a very important use case for deferred UI messages,
which have to be processed in the project’s loop. The example
above just prints the error message and the current stack, then
terminates the buggy process. Morphic and MVC open a
window to support interactive debugging with “step over,”
“step through,” “step into,” and so on. During debugging,
code execution will be simulated in Smalltalk. Suspended
processes can be resumed at any time to be scheduled as usual
by the VM. Such features can easily be added to the Squeak
Shell.

Processes of Ul frameworks should avoid busy waiting so
that the VM can relinquish CPU time to the operating system.
This can be achieved with a delay like Morphic and MVC
do. This is also required to give other processes below Ul
priority a chance to run. If Squeak’s idle process, which runs
at priority 10, becomes active because all other processes are
blocked, it will repeatedly tell the VM to give one millisecond
back to the operating system.

All bugs introduced to the main loop, which cannot be
resolved by restarting the main loop, will freeze the image.
For drawing objects on screen, Morphic provides specific
error handling that flags bad morphs to not be redrawn in
the next cycle. Squeak has no mechanism to fall back to
another project (kind) that might be capable of keeping the
system responsive. However, this is no technical limitation
but affects the current design of projects and error handling.
One idea is to have a shortcut like [CMD]+[.] that does not
only suspend the current process and restarts the UI loop,
but a shortcut that enters any other runnable project from
which the respective problem could be debugged. Another
idea is to find a better place for the primitive error handling
as described above. Such primitive error handling could first
try to enter any other runnable project and only then spawn a
rudimentary read-eval-print loop.

4.4 Recover From Mistakes

Squeak provides a great deal of flexibility and thus various
ways to “shoot yourself in the foot” by accident. Examples
include endless loops of message sends, infinite non-tail re-
cursions that fill the stack, not returning VM plugin calls
that block user input, and inadvertent termination of essential
processes. Programmers can usually recover from all these
pitfalls by saving and duplicating the image file frequently.
Even if the time of the last snapshot was a while ago, there
are several means to recover from within the image.

Squeak writes all source code changes and code evalua-
tions (“do-its”) into the .changes file, which is hence an
ever growing log of all code-centric activities. A regular im-
age snapshot will usually synchronize the . image file, which
contains the whole object graph, with the .changes file in
terms of source code pointers. Without that snapshot, the

latest changes are unknown to the image in the sense that
some methods do not point to the most recent versions of their
sources. However, there is a simple way to recover unsaved
changes with the Change Recovery tool, which scans the
.changes file for these artifacts and supports programmers
to load them again.

For endless loops or infinite recursions, there is no need
to shutdown the VM. There is usually the possibility to hit
[CMD]+[.] to interrupt the current process to debug it. For
Morphic, this is usually the single UI process because most
of the code is evaluated as an effect of user interaction such
as mouse clicks. MVC and Morphic do both prevent the user
from interrupting important processes by accident; they do
restart the Ul process if necessary.

If the available memory gets low, there will be an exception
raised so that the programmer can decide whether to continue
the computation at own risk or to revise the source code. The
VM will not suspend or terminate suddenly before warning
the user.

In Morphic, morphs will not be re-drawn if they did raise
an exception once in their drawing code. The programmer
will notice that in terms of a red rectangle with a yellow cross
spanning the morph’s bounds. That morph will still be in the
world and accessible via its halo to be explored and debugged.
In general, UI frameworks are free to implement any partial
error handling to remain “debuggable”.

In the end, programmers should be aware of the core me-
chanics in such a system to recover from errors. They should
now about the . changes file, the way code execution works,
and how [CMD]+[.] can work even if no regular event pro-
cessing takes place in the image. This does not only affect
builders of UI frameworks but all application programmers
who work in Squeak or similar self-supporting environments.
These means to recover can save a great amount of time and
foster efficient working habits. There is no reason to be afraid
of evaluating “true become: false” in your production im-
age.

4.5 When to Bootstrap?

Since the first steps of Morphic into Squeak’s MVC, in-
herited from Smalltalk-80, there has been effort to separate
both UI frameworks and to support the unloading respective
code. It took about seven years until 2001, when Morphic
became the user interface of Squeak 3.0 with many tools, ap-
plications, and other multimedia content. Thus, we conclude
that it is not only about the technical feasibility to bootstrap,
to leave the old framework behind. People have to accept the
different look-and-feel, learn the new features, and eventually
adapt their working habits. For this transition, there has to be
content. It cannot just be the new framework, but examples
that show how to make use of it, to illustrate the benefits, to
stimulate creativity.

Our Squeak Shell implements a command-line pattern,
which is very familiar in the Linux community. It’s simplic-
ity supported our focus on Squeak’s bootstrapping capabili-
ties for new Ul frameworks. By being able to evaluate any
piece of Smalltalk code, programmers can modify the whole
Squeak system from within the Squeak Shell. However, ad-

54

vanced programming facilities, such as method editors and
class browsers and interactive debuggers, are likely to have a
great impact on the productivity in such a shell. For reference,
emacs and vim provide many other valuable extensions for
this UI metaphor.

We do not think that the ultimate goal of separating Mor-
phic and MVC is to discard one for another. In self-supporting,
live programming systems such as Squeak, programmers can
benefit from having several working user interfaces. If pro-
grammers can freely choose their UL, they can accommodate
domain-specific tasks or address challenging debugging sce-
narios from different angles. There is no need for one UI to
surpass another in every aspect.

S. DISCUSSION

After describing the history of Squeak’s user interfaces, its
technical means to build a new one, and the Squeak Shell as
a practical example, we now take a step back and reflect on
the general motivation, lessons learned for Squeak and other
environments, opportunities for research and industry, and
possible next steps for Squeak itself.

5.1 Three Different Goals

We described Squeak’s two UI frameworks briefly and
our Squeak Shell in more detail. While this paper focuses
on Squeak’s current boostrapping capabilities, the design
goals for each of the three frameworks are quite different.
Their chronological order should not be confused with their,
basically orthogonal, intents.

When Smalltalk-80 was designed based on Smalltalk-72
and -76, one main driver was to create a usable Smalltalk
environment, which has a chance to become popular outside
its research context at that time. MVC was the first coherent
application framework and all the programming tools were
created with it. To the best of our knowledge, any bigger
application such as the Alternate Reality Kit [24] and The
Analyst?* had to step beyond the capabilities of MVC to
support richer graphics and interactions.

When Morphic was added to Squeak, there was already
experience gathered from the existing implementation in
Self [19]. Interactivity, direct manipulation, and multimedia
composition: the creators of Morphic moved away from pro-
fessional programmers towards novices including children
and their very first contact with computers and programs.
Comparing it with the MVC framework and its focus on pro-
gramming tools, Morphic simplifies rich content authoring
and sharing in general. Programming tools are basically just
a special form of applications in this context. Other applica-
tions such as Alice [3], EToys [1, 8], and Scratch [18] could
benefit from Morphic’s concepts in a notable way.

While we do favor live programming systems with in-
teractive and graphical content/tools, the decision to add
a command-line interface to Squeak was merely driven by

24The Analyst was a document-based, multimedia authoring

system with hyperlinks to connect pieces of information. It
provided spreadsheets, charts, outlines, images, maps, and
other kinds of interactive visualization.

its simple implementation. MVC and Morphic are more
complex because of their support for graphics-based content
authoring, mouse input, and advanced event handling. The
Squeak Shell is text-based and provides only minimal func-
tionality to execute Smalltalk code to interact with Squeak’s
shared object space. This minimalism is not only beneficial
for describing Squeak’s bootstrapping capabilities. Moreover,
its reduced complexity does entail a reduced maintenance ef-
fort and will hence be a robust safety net if the more complex
frameworks fail to function. Our recent efforts to clean-up
Squeak’s project concept is already part of the main branch
and the Squeak Shell will be soon, too.

5.2 Lessons Learned
From Squeak’s Projects

Projects represent the entry point for UI frameworks to
start initial processes and govern code execution and basic in-
teraction patterns between objects. Projects can also be used
to organize content, such as windows and other graphical
objects, in a hierarchy (Figure 2). In live programming envi-
ronments, such a projects concept should be located directly
above the base system with its standard library, means to run
code, and all VM extensions. Any higher level application
or framework should be a project to some extent. Although
there will always be other processes running (see subsec-
tion 3.2), projects are meant to establish and maintain the
“liveness” in such environments. Compared to “projects” in
traditional programming environments such as Visual Studio
or Eclipse, Squeak’s projects do not only manage structure
but also behavior.

We learned many interesting aspects of Squeak while im-
plementing the command-line because we had to refactor
many parts of the system to improve modularity and mini-
mize the expected interface of such a new project kind. We
realized that debugging is closely related to code execution
and that the invocation of the debugger is “too far away” from
projects, which are actually responsive for (re-)starting the
main loop. At the time of writing, an unhandled exception
invokes the debugger via the current tool set. Only then, the
debugger considers the current project for interrupting, re-
suming, or terminating the Ul process. In addition to such
superfluous indirections, we stumbled upon several global
variables used to control either MVC or Morphic. If we
did not manage to shutdown and startup projects correctly
when switching between them, it was likely to lock-up the
system. For example, there is the method SmalltalkImage
>> #isMorphic, which used to check the global World not
being nil. This was one of many challenges posed by the
predatory use of global state.

It turned out to be very beneficial to have a shared ob-
ject space. While plugin architectures in environments such
as Eclipse provide only a limited interface to access and
manipulate data, Squeak reveals everything with classes-
as-objects and a powerful meta-object protocol including
#allInstances. Advanced Eclipse plugins such as CodeBub-
bles do have to make serious efforts to mold the user expe-
rience while reusing the underlying Eclipse platform [22].
There are several examples out there where plugins had to

95

115821 am

Type revert to revert your last method change.
Type ‘exit' to exit the emergency evaluator.
Srevert

action

sing action:

“tion deco|| + blockReturnTe

ndDo. + pushClosurec
scanner

o scanner:

SmalltalkEditor(TextEditor)>>dispatchOnKeyboardEvent:
SmalltalkEditor{TextEditor)>>keyStroke

[in [l in TextMorphForEditview(TextMorp
TextMorph)

tllo Browser

ws: [scripe: [wistar | chang: | aackpe | save | +repo | open |

ated (nice 2) L[CaTools\squeak_50\Squeak-50-Af
ted (ar19) http/source squeak org/squeaks
ted (fbs 24)
ted (dtl4)

iew(TextMorph) >>k
ss>>codeCompletionAround textMorphkeystroke:
ToolSet class==codeCompletionAround:textMorph keyStroke:
pl iew(TextMorph)=>keyStrok
Type CR to enter an emergency evaluator.
Type any other character to restart Tests (t

Commanatine (cmi

Workspace

Figure 5: Squeak’s emergency evaluator (top left) with
basic functionality to run Smalltalk code to recover from
a locked system state by, for example, reverting the pre-
vious modification.

generate the whole AST by themselves because Eclipse did
not provide access to its own low-level structures. This is ar-
guably no implication of having a file-based system — while
Squeak is an image-based one — but rather of designing a
system without some kind of meta-object protocol or query
language. However, there are efforts made to mitigate this
issue by providing scripting interfaces to such environments.
This is a first step into the right direction.

In Squeak, there are no generic means to safely execute
projects in background. There is a shared object space and
every project assumes that it is alone in the system. Data struc-
tures are usually not thread-safe. The only solution would be
to explicitly account for background activities so that projects
do not only release computation power to the operating sys-
tem (see subsection 3.2) but also to other projects. Such
well-defined, cooperative context switching might enable con-
current project execution. In Morphic, such a well-defined
switching point is in WorldState >> #doOnceCycleFor: 2
In MVC, it is Controller >> #controlLoop. Additionally,
Morphic provides higher-level means to make object interac-
tion concurrent: stepping. Steps are like input event handlers,
they have to complete quickly to not impair the responsive-
ness of the UL. Any object can step and morphs use it to
implement animation. Stepped code is always executed in
the UI process. In the general sense, however, projects can do
what they want and employ additional process schedulers as
described before. Any application can spawn new processes.
Since Squeak’s process forking mechanism is conceptually
below the project concept, it is not in the respective frame-
work’s control. It remains tricky to let background projects
tick.

Projects can be used to circumvent Squeak’s emergency
evaluator (Figure 5), which is usually the last hope to revert
the system to a usable state in case of a serious problem. If
we assume that different project kinds are implemented quite
differently and hence share aspects from the base system

2In Squeak’s Morphic, there are some faint traces of doing a
world cycle in background. This was, however, never fully
implemented.

only, entering another project kind can help debug serious
issues of a Ul framework. For example, if you introduce a
bug in Morphic’s list widgets, you cannot draw the debugger
window, which uses lists to show the stack frames, and hence
you will not be able to debug the problem with Morphic’s
tools. Then, the emergency evaluator would usually appear.
Although there do not seem to be (m)any MVC programmers
in the Squeak community, one would arguably be more happy
to fix such an issue with more sophisticated MVC tools than
with the limited emergency evaluator.

There might be that one convenient or efficient tool for a
common problem scenario...but it did not get implemented
for the new environment you are working in right now. Bad
luck. However, Squeak’s shared object space in combina-
tion with the projects can help to just launch that tool in the
older environment and run it on the problem data. Such tools
include analysis, visualization, or interactive code transfor-
mation. Considering programming tools, you can benefit
from keeping old UI frameworks up and running — like MVC.
This is strongly related to having a shared object space as
mentioned above. Otherwise, programmers would have to
find a common representation to be understood by both tools,
like files with chunks of semi-structured text.

During all of our experiments with the Squeak Shell, the
VM kept running. If programmers provoke a stack overflow,
there will usually be an exception raised, which pauses the
broken computation to let the user decide. If primitive calls
(see subsection 3.3) fail, there are exceptions raised, too.
However, if a failing primitive relates to frequent activities
such as user input event handling and screen updates, then
there is no chance to debug that. The environment will get
stuck.

5.3 From Research Prototypes
to Useful Applications

We believe that, among many other capabilities, Squeak
is a valuable research and prototyping platform for various
kinds of user interfaces, interaction models, programming
paradigms, and educational methods. Squeak can also be
used to create many kinds of useful applications, be it in
Morphic, MVC, or on top of any other framework. The
platform is very flexible and user experiences are moldable
to accommodate any domain, task, or personal preference.

In this paper, we focus on bootstrapping UI frameworks,
but the transition between applications and frameworks is
fluent. Content authoring tools such as Etoys [1, 8] look
like frameworks themselves, while they depend on other
frameworks to provide tools for lower-level tasks such as code
writing and debugging. There may be no need to bootstrap
because the usage scenarios overlap only in parts. Not every
user is a professional programmer, not every programmer can
benefit from the means designed to help domain experts or
children.

The Parks PDA [21] implements a hypercard-like interface
on top of MVC. There is a single application with a main
loop running on top of an MVC controller loop (compare
to subsection 4.3). Any unhandled exception will reveal
underlying programming tools. While many users could

56

feel helpless in that situation, programmers could still fix
and improve the live system conveniently. The Parks PDA
interface also supported content artists to communicate their
ideas to programmers, which could in turn keep using their
well-known tools. No need to implement programing tools
in that hypercard interface. No need to bootstrap.

Further examples include Vivide [25], which builds on top
of Morphic and relies on the traditional debugger to some
extent. There is Scratch [18], which originally used the Mor-
phic in Squeak 2.8, that tries to catch all errors in scripts to
help non-programmers as much as possible. The tODE?® en-
vironment also appears as a single application in Morphic to
support administration tasks in the GemStone object database
management system [2].

Despite non-existent examples, you could employ the con-
cept of projects to write “native” Squeak/Smalltalk applica-
tions. While the VM would still be running as a regular pro-
cess in your operating system — such as Windows, Linux, and
Mac OS - the application code would not build upon a frame-
work such as Morphic but it would have its own main loop
and directly do primitive event handling, display drawing,
and so on — like writing a game with SDL?’ Squeak would
take on the sole role of an execution environment with some
libraries. For example, one could think of a Telnet server that
exposes the object space to other systems. To some extent,
this would be comparable with GNU Smalltalk?® where you
typically? run Smalltalk scripts that were written in some
external environment. When building such “native” Squeak
applications, programmers would still write code with the
tools in Morphic or MVC. Even interactive debugging would
work from within another Ul framework because Squeak of-
fers sophisticated means to manipulate processes and stack
frames. UI frameworks and their tools could remain plug-
gable, that is, loadable and unloadable as required. For appli-
cation deployment, one could easily>° strip off the tools. In
case of a serious error, there is always the emergency evalua-
tor (see Figure 5) where any Smalltalk code can be evaluated
and hence some programming framework can be attached
on-the-fly. Theoretically.

5.4 Next Steps

There are practical aspects that we plan to address to fur-
ther improve the Squeak platform considering Ul frameworks
and “native” applications:

o Add the Squeak Shell and install it as fall-back project
for serious errors in Morphic or any other project kind.

26The Object-centric Development Environment: https://
github.com/dalehenrich/tode, accessed on June 17, 2016
Y’Simple DirectMedia Layer: https://www.libsdl.org, ac-
cessed on June 16, 2016

Bhttp://smalltalk.gnu.org, accessed on June 16, 2016
PThere are GUI frameworks for GNU Smalltalk such
as Blox: https://www.gnu.org/software/smalltalk/manual/
html_node/Blox.html, accessed on June 16, 2016

30Tn Scratch [18] and Etoys [1, 8], the Morphic environment
had to be sealed with some effort to hide programming tools.
Other examples include OpenQwaq (github.com/itsmeront/
opengwagq) and Impara’s Plopp (www.planet-plopp.de).

e Improve the means to debug one UI framework from
within another by supporting “proceed” and hence re-
suming the project that failed to handle the exception
by itself.

e Reduce the footprint of new project kinds by making
them invoke the emergency evaluator (or a fall-back
project) by default if unhandled exceptions occur. Fur-
ther reduce the risk to lock-up the environment.

e Add NativeApplication as a subclass of Project to
provide a simple interface for Smalltalk projects that do
not intend to benefit from Morphic or MVC.

There are also research interests and open questions that
we intend to pursue to find out more about the capabilities of
Squeak:

e What are the actual limitations for user interface frame-
works to be implemented in Squeak? Do VM exten-
sions represent a feasible option for UI programmers or
are those too challenging?

e Is there a theoretical model to describe the risk of lock-
ing up the environment? Can it be improved?

e Can you compare the implementation effort for an in-
terface in Squeak with another (non-live) environment?

6. CONCLUSIONS

We presented milestones of Squeak’s UI history. The initial
implementation of Morphic happened from within MVC,
then it was improved from within itself. Meanwhile, Squeak’s
projects evolved into an abstraction for other UI frameworks.

We described Squeak’s means to work with objects, man-
age code execution, and invoke platform-specific functions
in the VM. Based on this, we implemented a command-line
interface to discuss and evaluate the project concept.

We think that user interfaces represent a vital part in self-
supporting systems. Next to the virtual machine and the
programming language, the user interface can always benefit
from novel ideas, prototypes, and working implementations.
Researchers and application developers should strongly con-
sider realizing their ideas in such environments to benefit
from immediacy, liveness, and directness.

Acknowledgments

Thanks to Eliot Miranda, David T. Lewis, Tim Rowledge,
Bert Freudenberg, Jens Lincke, Dan Ingalls, and the entire
Squeak community for answering our questions personally
or on the mailing list. We owe deepest gratitude to Andreas
Raab, who contributed to Squeak with ever so much diligence
and effort. Sincere thanks also go to all PX workshop partic-
ipants, who provided valuable feedback by discussing this
topic thoroughly. We gratefully acknowledge the financial
support of HPI’s Research School®' and the Hasso Plattner
Design Thinking Research Program??

3 www.hpi.uni-potsdam.de/research_school

2www.hpi.de/en/research/
design-thinking-research-program

o7

7. REFERENCES

[1] B.J. Allen-Conn and K. Rose. Powerful Ideas in the
Classroom. Viewpoints Research Institute, Inc, 2003.

[2] P. Butterworth, A. Otis, and J. Stein. The GemStone
Object Database Management System.
Communications of the ACM, 34(10):64-77, 1991.

[3] S. Cooper, W. Dann, and R. Pausch. Alice: A 3-D Tool

for Introductory Programming Concepts. In Journal of

Computing Sciences in Colleges, volume 15, pages

107-116, 2000.

L. P. Deutsch. The Past, Present and Future of

Smalltalk. In Proceedings of the 3rd European

Conference on Object-Oriented Programming

(ECOOP), pages 73-87, 1989.

T. Felgentreff, J. Lincke, R. Hirschfeld, and

L. Thamsen. Lively Groups: Shared Behavior in a

World of Objects Without Classes or Prototypes. In

Proceedings of the Workshop on Future Programming,

pages 15-22. ACM, 2015.

[6] T. Felgentreff, T. Pape, L. Wassermann, R. Hirschfeld,

and C. F. Bolz. Towards Reducing the Need for

Algorithmic Primitives in Dynamic Language VMs

Through a Tracing JIT. In Proceedings of the Workshop

on Implementation, Compilation, Optimization of

Object-Oriented Languages, Programs and Systems

(ICOOOLPS). ACM, 2015.

B. Freudenberg, D. H. Ingalls, T. Felgentreff, T. Pape,

and R. Hirschfeld. SqueakJS: A Modern and Practical

Smalltalk That Runs in Any Browser. In Proceedings

of the 10th ACM Symposium on Dynamic languages

(DLS), pages 57-66. ACM, 2014.

B. Freudenberg, Y. Ohshima, and S. Wallace. Etoys for

One Laptop Per Child. In 2009 Seventh International

Conference on Creating, Connecting and Collaborating

Through Computing (C5), pages 57-64. IEEE, 2009.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Abstraction and Reuse of
Object-oriented Design. Springer, 2001.

[10] A. Goldberg. Smalltalk-80: The Interactive
Programming Environment. Addison-Wesley Longman
Publishing Co., Inc., 1984.

[11] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley
Longman Publishing Co., Inc., 1983.

[12] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct
Manipulation Interfaces. Human-Computer Interaction,
1(4):311-338, 1985.

[13] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak—A
Practical Smalltalk Written in Itself. ACM SIGPLAN
Notices, 32(10):318-326, October 1997.

[14] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and
T. Mikkonen. The Lively Kernel: A Self-supporting
System on a Web Page. In Self-Sustaining Systems,
pages 31-50. Springer, 2008.

[15] D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, and

[4

—_

[5

—

[7

—

[8

—

K. Doyle. Fabrik: A Visual Programming Environment.
ACM SIGPLAN Notices, 23(11):176-190, 1988.

[16] W.R. LaLonde and J. R. Pugh. Inside Smalltalk Volume
1I. Prentice Hall USA, 1990.

[17] J. Maloney. An Introduction to Morphic: The Squeak
User Interface Framework. Squeak: Open Personal
Computing and Multimedia, 2001.

[18] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The Scratch Programming Language and
Environment. ACM Transactions on Computing
Education (TOCE), 10(4):16:1-16:15, 2010.

[19] J. H. Maloney and R. B. Smith. Directness and
Liveness in the Morphic User Interface Construction
Environment. In Proceedings of the 8th Symposium on
User Interface and Software Technology (UIST), pages
21-28. ACM, 1995.

[20] J. McCarthy. LISP 1.5 Programmer’s Manual. MIT
press, 1965.

[21] Y. Ohshima, J. Maloney, and A. Ogden. The Parks
PDA: A Handheld Device for Theme Park Guests in
Squeak. In Companion of the 18th Annual ACM
SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 370-380. ACM, 2003.

[22] S. P. Reiss, J. N. Bott, and J. J. La Viola. Plugging In
and Into Code Bubbles: The Code Bubbles
Architecture. Software: Practice and Experience,
44(3):261-276, 2014.

[23] D. A. Smith, A. Kay, A. Raab, and D. P. Reed. Croquet
- A Collaboration System Architecture. In Proceedings
of the Conference on Creating, Connecting and
Collaborating Through Computing (C5) 2003, pages
2-2. IEEE, Jan. 2003.

[24] R. B. Smith. Experiences with the Alternate Reality
Kit: An Example of the Tension Between Literalism
and Magic. In ACM SIGCHI Bulletin, volume 17, pages
61-67. ACM, 1987.

[25] M. Taeumel, M. Perscheid, B. Steinert, J. Lincke, and
R. Hirschfeld. Interleaving of Modification and Use in
Data-driven Tool Development. In Proceedings of the
2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming &
Software (Onward!), pages 185-200. ACM, 2014.

[26] S. L. Tanimoto. A Perspective on the Evolution of Live
Programming. In Proceedings of the Ist International
Workshop on Live Programming (LIVE), pages 31-34.
IEEE, 2013.

[27] D. Ungar and R. B. Smith. Self. In Proceedings of the
3rd Conference on History of Programming Languages
(HOPL), pages 9/1-9/50. ACM SIGPLAN, 2007.

58

APPENDIX
A. LINES OF CODE

Here is the code that was used to count the classes, meth-
ods, and source code lines:

| morphic mvc tools other target cls
morphicPrefix mvcPrefix toolsPrefix |

morphic := #(® 0 O morphic).

mvc := #(0® ® ® mvc).

tools := #(® 0 O tools).

other := #(® 0 0 other).

morphicPrefix := ’Morphic-’.

mvcPrefix := ’ST80-’. "Older versions use 'Interface—"."
toolsPrefix := 'Tools-’. "Newer versions only."

SystemOrganization categories do: [:cat |
(cat beginsWith: morphicPrefix)
ifTrue: [target := morphic]
ifFalse: [(cat beginsWith: mvcPrefix)
ifTrue: [target := mvc]
ifFalse: [(cat beginsWith: toolsPrefix)
ifTrue: [target := tools]
ifFalse: [target := other]]].

"Count number of classes."

target at: 1 put: (target at: 1) +
(SystemOrganization listAtCategoryNamed: cat)
size.

"Count number of methods for each class."
(SystemOrganization listAtCategoryNamed: cat)
do: [:className |
cls := Smalltalk at: className.
target at: 2 put: (target at: 2) + cls
selectors size + cls class selectors size.
"Count the lines of code for each method."
cls selectors do: [:sel | target at: 3 put:
(target at: 3) + 1 + ((cls sourceCodeAt:
sel) count: [:char | char = Character cr])].
cls class selectors do: [:sel | target at: 3
put: (target at: 3) + 1 + ((cls class
sourceCodeAt: sel) count: [:char | char =
Character cr])]].

(morphic, mvc, tools, other) inspect.

It works in all Squeak versions. Note that we use class cat-
egories to distinguish between classes related to MVC, Mor-
phic, or the rest of the system. In the first Squeak versions,
these categories were “Interface-*” for MVC and “Morphic-
” for Morphic. Later, MVC code was moved to “ST80-”
indicating that the code is from Smalltalk-80.

Note that we do not consider extension methods, which
can be in classes of any other package, because this is only a
small fraction and earlier Squeak versions did not have them.

B. THE SHELL ON TOP OF MORPHIC

The Squeak Shell can be started within Morphic by evalu-
ating the following expression in a workspace:

| world |
world := SgshController new.
[world doOneCycle] repeat.

This works as long as there is no exception raised in the Ul
process, which will then let Morphic start its own loop again.
When the Squeak Shell is running in Morphic, the call stack
looks like this:

EventSensor>>processkvent: - - ——————— —— —— —(— —— —— N
EventSensor>>fetchMoreEvents
EventSensor>>nextEventFromQueue
EventSensor>>nextEvent

[1 in SgshController>>processinputEvents -
BlockClosure>>whileNotNil:

SgshController>>processinputEvents

SqshController>>doOneCycle

UndefinedObject>>Dolt ———————————————————————- -
Compiler>>evaluateCue:iffail; - - —————————————————— N
Compiler>>evaluateCue:ifFail:logged:
Compiler>>evaluate:in:to:notifying:ifFail:logged:

[1 in SmalltalkEditor(TextEditor)>>evaluateSelectionAndDo:
BlockClosure>>on:do:
SmalltalkEditor(TextEditor)>>evaluateSelectionAndDo:
SmalltalkEditor(TextEditor)>>evaluateSelection
SmalltalkEditor(TextEditor)>>dolt

SmalltalkEditor(TextEditor)>>dolt:
SmalltalkEditor(TextEditor)>>dispatchOnKeyboardEvent:
SmalltalkEditor(TextEditor)>>keyStroke:

[1in []in TextMorphForEditView(TextMorph)>>keyStroke:
TextMorphForEditView(TextMorph)>>handlelnteraction:fromEvent:
TextMorphForEditView>>handlelnteraction:fromEvent:

[1in TextMorphForEditView(TextMorph)>>keyStroke:

StandardToolSet class>>codeCompletionAround:textMorph:keyStroke:
ToolSet class>>codeCompletionAround:textMorph:keyStroke:
TextMorphForEditView(TextMorph)>>keyStroke:
TextMorphForEditView>>keyStroke:
TextMorphForEditView(TextMorph)>>handleKeystroke:
KeyboardEvent>>sentTo:

TextMorphForEditView(Morph)>>handleEvent:
TextMorphForEditView(Morph)>>handleFocusEvent:

[1in HandMorph>>sendFocusEvent:to:clear:

BlockClosure>>on:do:

PasteUpMorph>>becomeActiveDuring:
HandMorph>>sendFocusEvent:to:clear:
HandMorph>>sendEvent:focus:clear:

HandMorph>>sendKeyboardEvent:

HandMorph>>handleEvent:
HandMorph>>processEvents
[1in WorldState>>doOneCycleNowFor:
Array(SequenceableCollection)>>do:
WorldState>>handsDo:
WorldState>>doOneCycleNowFor: —
WorldState>>doOneCycleFor:
PasteUpMorph>>doOneCycle

[1 in MorphicProject>>spawnNewProcess
[1 in BlockClosure>>newProcess

Squeak Shell loop

Key press [CMD]+[d] in workspace to evaluate an expression

Morphic loop

C. COUNTING PRIMITIVE CALLS

The meta-object protocol in Squeak supports iterating over
all classes (resp. behaviors) and methods. Each method is
an instance of CompiledMethod, which provides access to its
byte codes, literals, and method header. This information can
be used to find out about primitive calls into the VM:

| methodsPrimitive methodsPlugin |
methodsPrimitive := OrderedCollection new.
methodsPlugin := OrderedCollection new.
SystemNavigation default
allSelectorsAndMethodsDo: [:beh :sel :method |
"Primitives 256 to 519 indicate quick return of fields."
(method primitive > 0) & method isQuick not
ifTrue: [
method pragmas first arguments size = 1
ifTrue: [methodsPrimitive add: method]
ifFalse: [methodsPlugin add: method]]].

59

	Contents
	How Live are Live Programming Systems? Benchmarking the Response Times of Live Programming Environments (Patrick Rein, Stefan Lehmann, Toni Mattis, Robert Hirschfeld)
	Patrick Rein, Stefan Lehmann, Toni Mattis, Robert Hirschfeld

	Satisfaction, Time Investment, and Success in Students' Programming Exercise (Amir Kirsh and Iris Gaber)
	Amir Kirsh and Iris Gaber

	Towards Making a Computer Tutor for Children of All Ages (A Memo) (Yoshiki Ohshima, Alessandro Warth, Bert Freudenberg, Aran Lunzer, and Alan Kay)
	Yoshiki Ohshima, Alessandro Warth, Bert Freudenberg, Aran Lunzer, and Alan Kay

	Towards Gaze Control in Programming Environments (Astrid Thomschke, Daniel Stolpe, Marcel Taeumel, and Robert Hirschfeld)
	Astrid Thomschke, Daniel Stolpe, Marcel Taeumel, and Robert Hirschfeld

	Exemplifying Moldable Development (Andrei Chis, Tudor Girba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and Aliaksei Syrel)
	Andrei Chis, Tudor Girba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and Aliaksei Syrel

	Evolving User Interfaces From Within Self-supporting Programming Environments: Exploring the Project Concept of Squeak/Smalltalk to Bootstrap UIs (Marcel Taeumel and Robert Hirschfeld)
	Marcel Taeumel and Robert Hirschfeld

