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Abstract

In object-oriented programming, polymorphic dispatch of opera-
tions decouples clients from specific providers of services and al-
lows implementations to be modified or substituted without affect-
ing clients.

The Uniform Access Principle (UAP) tries to extend these qual-
ities to resource access by demanding that access to state be indis-
tinguishable from access to operations. Despite language features
supporting the UAP, the overall goal of substitutability has not been
achieved for either alternative resources such as keyed storage, files
or web pages, or for alternate access mechanisms: specific kinds of
resources are bound to specific access mechanisms and vice versa.
Changing storage or access patterns either requires changes to both
clients and service providers and trying to maintain the UAP im-
poses significant penalties in terms of code-duplication and/or per-
formance overhead.

We propose introducing first class identifiers as polymorphic
names for storage locations to solve these problems. With these
Polymorphic Identifiers, we show that we can provide uniform ac-
cess to a wide variety of resource types as well as storage and ac-
cess mechanisms, whether parametrized or direct, without affecting
client code, without causing code duplication or significant perfor-
mance penalties.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Input/output; Poly-
morphism; Dynamic storage management

Keywords

1. Introduction

Imperative programming languages feature the concept of a store
with locations. Locations or L-Values are characterized by the es-
sential features of having content (an associated R-Value) and 2
operations to access and update this value from the location, the
Load-Update Pair or LUP. Strachey decouples the definition of a
store from the notion of memory or addressability [31].
Programming languages such as Pascal or C implement the
store as main memory, with identifiers mediating access. We can
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compose these identifiers, use them on the LHS and RHS and
partially use them for indirect access. Computational abstraction
is handled separately.

Object-oriented programming languages such as Smalltalk,
Java and Objective-C mostly maintain the distinction between
computational and storage abstraction, with polymorphism and
most other abstraction mechanisms only applying to computational
abstraction. Access to storage, when not mediated via a method,
defeats encapsulation and makes code brittle against changes or
subclassing, which is why convention moved toward having all
access to state (instance variables) mediated by methods.

The Uniform Access Principle (UAP) [22] was coined by Meyer
to formalize this convention: access to state should be indistin-
guishable from computation. The purpose of the UAP is to isolate
clients from changes to the storage strategy of an object.

Different languages implement the UAP using different mecha-
nisms: Java [14] and Smalltalk [13] mostly by convention and man-
ually written accessor methods. Eiffel and Scala [24] make access
to instance variables and simple methods indistinguishable for the
client. Self [32] and Newspeak [4] hide state completely behind slot
accessor. Objective-C [20], C# [1] and Python [34] introduce prop-
erties that automatically generate accessor methods for instance
variables and also allow clients to use classical L-Value assignment
syntax rather than procedural invocation to set a property (ECMA-
standard Eiffel [7] uses aliases [21] to achieve a similar effect).

Problem Statement: However, the current implementations of
the UAP are limited by only applying this uniformity to a single
store, state stored in instance variables of objects. Only then do
we have generic Load-Update Pairs provided automatically by the
language. For state modeled using means other than instance vari-
ables, only procedural abstraction is available, which means pro-
viding distinct Load-Update Pairs for every individual L-Value to
be stored, rather than one LUP applied generically/polymorphically
to all such L-Values.

This problem is especially apparent when dealing with external
resources, which can only be accessed procedurally despite the fact
that filesystems and more generally REST [9] URIs perfectly fit
Strachey’s model of a store with L-Values and a polymorphic Load-
Update Pair (HTTP [8] GET and PUT methods, respectively).

name ;

[person name];

[person objectForKey:@"name"];

[NSStrings stringWithContentsOfFile:@"name"];

[[NSData dataWithContentsOfURL:[NSURL URLWithString:
@"http://www.person.com/name"]] stringValuel;

Listing 1. Non uniform access by resource type.

Without going into too much detail, Listing 1 briefly illustrates
the problem using just a few of the variations that are implied by



C# Objective-C
read property c = a.b; c = a.b;
write property a.b = c; a.b = c;
send message a.b(c); [ab:c];
define property | public int b | @property int b;
autogenerated | {get; set; } | @synthesize b;

Table 1. C# and Objective-C syntax

different storage mechanisms: retrieving a name when it is a local
variable or instance variable of the local object, by message, when
stored in a dictionary, a file or on a server.

Furthermore, the syntactic sugar that allows clients to treat
procedurally implemented storage like L-Values is only superficial,
being mapped directly to method invocations. This means that
only simple, direct access patterns can treat such a value like an
L-Value, indirect and parametrized access has to deal with the
procedural abstraction directly. This procedural abstraction both
separates the Load-Access Pair for a single L-Value, and at the
same time combines the identifier for a specific L-Value with the
operation to be performed on it.

We propose that these problems can be solved by putting ab-
straction over state (stores and L-Values) on an equal footing with
procedural abstraction. Instead of having to map directly to per-
attribute access methods for non-instance-variable stores, develop-
ers should be able to define custom stores with generic, per-store
access methods that can then be applied generically. Polymorphic
Identifiers adapt both the syntax and semantic model of URIs [2]
for the definition and use of custom stores within a programming
language. With this mechanism, we are able to overcome the limi-
tations of the UAP as currently implemented and naturally integrate
custom stores and external resources into our programs.

We first explore the limitations of current approaches to the
UAP in section 2, demonstrating that trying to extend the UAP
to custom stores or access methods results in code-bloat, perfor-
mance problems or both. Section 3 introduces Polymorphic Identi-
fiers, which we evaluate in terms of the problems shown earlier in
section 4.

2. Non-uniform access

This section provides three resource access scenarios where uni-
form access is difficult to achieve with standard mechanisms, lead-
ing to compromises and non-uniform access patterns in practical
code. Please note that this section is not about exhaustively enu-
merating all possible solutions or conclusively proving that no bet-
ter solutions exist. Instead it highlights that for common and simple
situations, achieving the goals of the UAP is not necessarily sim-
ple and obvious, and non-uniform solutions are often viable and
commonly used alternatives.

We use Objective-C in our examples because it has both prop-
erties and a “message not understood” hook for handling messages
without implementing them. Table 1 shows basic Objective-C syn-
tax compared to C#.

2.1 User-defined storage implementations

Although language features supporting the UAP make it easy to
substitute a single instance variable with a pair of methods or vice
versa, substituting custom stores, and doing so wholesale, is more
difficult.

For our examples, we will be using a trivial Person class shown
in Listing 2 using Objective-C syntax with property definitions for
attributes name and age. We wish to replace the instance variable
storage of our attributes with a custom store, in this case a dictio-
nary.
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@interface Person
{3

@property NSString *name;
@property NSNumber *age;
...Qend

@implementation Person
@synthesize name,age, ...;
Q@end

NSObject

Listing 2. Person class.

Dictionaries provide a generic interface to access their contents,
so they have one method for retrieving objects by key and another
method for storing objects by key, in our example objectForKey:
and setObject:forKey: whereas object properties can be ac-
cessed using dot notation and the property name. Listing 3 summa-
rizes the differences, it is clear that implementations cannot simply
be substituted as is.

person.name;
person.name = newName;
person[@"name"];

person[@"name"] = newName;

Listing 3. Dictionary vs. Property surface syntax.

It should be noted that similar to C# and Eiffel, the syntax in
Listing 3 is surface syntax only that is mapped by the compiler to
the message sends shown in Listing 4.

namel;

setName :newName];
objectForKey:@"name"];

setObject :newName forKey:Q@"name"];

[person
[person
[person
[person

Listing 4. Dictionary vs. Property messages.

There are three basic options for bridging the gap and making
access uniform between the dictionary and the object:

1. Listing 5 adapts the object to the dictionary’s protocol by imple-
menting objectForKey: and setObjectForKey: and map-
ping the keys to properties.

2. Listing 6 adapts the dictionary to the object’s protocol by im-
plementing cover methods for every potential attribute that is to
be stored.

3. Listing 7 also adapts the dictionary to the object’s protocol,
but this time by implementing the “forwardInvocation:” error
handler that is invoked when a message is not understood by an
object.

None of these options is particularly appealing, as they all
involve either performance penalties, repetitive code or both.

Adopting the dictionary’s protocol as in Listing 5 as the uni-
form interface between clients and their service providers means
that the language’s built in notations for access will no longer
be used for interfacing between objects, rather objectForKey:
and setObject:forKey: will now be used universally. In addi-
tion to bloating client code and making it virtually unreadable,
this also means having to implement the matching method pair
objectForKey:/setObject:forKey: for every object. These
methods are not just boilerplate that duplicates the already-existing
property definitions, they are also more than an order of magnitude
slower than the built-in access, and slower even than dictionary ac-
cess. This performance overhead is imposed by the API, it cannot
easily be removed by clever implementations.



-objectForKey:aKey
{
if ( [aKey isEqual:@"name] ) {
return self.name;
} else if ( [aKey isEqual:Q@"agel] ) {
return self.age;
} else if
}
}
-setObject:newObject forKey:aKey
if ( [aKey isEqual:@"name] ) {
return self.name=newObject;
} else if ( [aKey isEqual:Q@"age] ) {
return self.age=newObject;
else if

}
}

Listing 5. Making an object dictionary-compatible.

In combination, these aspects of this solution strongly discour-
age object-modeling, as just using dictionaries everywhere is not
just less code, but also faster than introducing objects.

-(NSString*)name {
return [self objectForKey:Q@"namel];
}
-(void) setName: (NSString*)newName {
[self setObject:newName forKey:@"namel;
}
-(NSNumber*) age {
return [self objectForKey:Q@"age"];
}
-(void)setAge: (NSNumber*)newAge {
[self setObject:newName forKey:Q@"age"];
}

Listing 6. Making a dictionary object-compatible.

The second option is to keep property access as the universal
interface, mapping to dictionaries inside the object using cover
methods as shown in Listing 6. The advantages of this approach
are that we do no abandon the language-defined interface facilities
and there is no performance overhead imposed by the API. The
disadvantage is obvious from Listing 6: introduction of duplicated
boilerplate code on a massive scale.

Although independent identifiable concerns are supposed to be
isolated in a single module [25], and object-orientation is supposed
to help us with this goal, this “storage concern” is now spread all
over the code-base. If we want to change storage from instance
variables to dictionaries or back for a variety of objects, we must
modify all the objects involved, introducing or removing these
cover methods as needed.

In dynamic languages, we have a third option, using the error
handler invoked when a method is not found to simulate the cover
methods without having to implement them, as shown in Listing 7.
Although this approach does reduce the need to write cover meth-
ods for each individual attribute, it still needs to be implemented for
every keyed access class or injected if injection facilities are avail-
able. The fact that it must convert distinct message names to keys
via string processing not only makes it fragile, but also quite slow,
at around three orders of magnitude slower than a plain message
send accessing an attribute.

Although we have shown three possible ways of honoring the
UAP when dealing with custom attribute storage in Objective-C,
all of them come with serious drawbacks, and so the fourth, not
previously listed option is usually chosen: simply live with non-
uniform access for custom stores.
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-(void) forwardInvocation: (NSInvocation*) inv
{
SEL sel=[inv selector];
NSString *msg=NSStringFromSelector ( sel );
if ( [msg hasPrefix:@"set"] ) {
NSRange r NSMakeRange (3,1);
NSString *first [msg substringWithRange:rl;
NSString *rest [msg substringFromIndex:4];
NSString x*key nil;
id arg=nil;
[inv getArgument:&arg atIndex:2];
first=[first lowercaseStringl;
key=[first stringByAppendingString:rest];
[self setObject:arg forKey:keyl;
} else {
id result=[self objectForKey:msgl;
[inv setResult:&result];

Listing 7. Compatibility via forwardInvocation.

Other object-oriented languages such as C#, Scala, Python,
Ruby, Eiffel, Java and Smalltalk, present the developer with the
same tradeoffs, though details vary slightly and the dynamic mes-
sage resolution technique from Listing 7 is only available in the
dynamic languages.

The problems presented apply to any custom store, not just dic-
tionaries, because any custom store has to identify the storage loca-
tions (L-Values) to reference, so it has to translate from messages to
L-Values and back somehow. Furthermore, they are transitive: they
apply just as much if we hide a custom store inside of an object as
they do when we substitute the custom store directly for the object.

The special machinery available in languages to translate in-
stance variable storage to messages is of no help here.

2.2 Parametrized access

Another source of non-uniformity is the difference between direct
access, where the attribute to be accessed is known at compile time
and present in the source code, and parametrized access, where the
exact attribute is passed as a parameter at run time. Parametrized
access is frequently used in UI toolkits, serialization and persis-
tence mechanisms in order to generically access attributes of an
object. For example, a UI text field is parametrized in order to be
able to read and write the name attribute of an object.

Table 2 summarizes how read and write access to an attribute
differs between direct and parametrized access in Objective-C.
Property access is the simplest, as there simply is no parametrized
variant available. Keyed access can use the same message format
for indirect and direct access, and more crucially, the same key for
both read and write access. Message-based access, on the other
hand, must not only switch from the direct messaging syntax to
indirect perform: messages, but also must provide two different
message selectors, the read and the write selector (e.g. name and
setName:).

In order to have parametrized read/write access to an attribute,
we again seem to have effectively three options:

1. Use dictionaries or another keyed store exclusively when
parametrized access is required

2. Map a keyed API to message-sends dynamically (option 2 of
section 2.1).

3. Implement an “L-Value Reference” object that either captures
or dynamically derives the two message required to access the
specified attribute relative to an object.



direct

parametrized

property read person.name;

property write person.name=newName;

message read [person name];

[person perform:readAttrSel];

message write | [person setName:newName];

[person perform:writeAttrSel with:newName];

keyed read person[@"name"] ;

person[anAttribute] ;

keyed write person[@"name"]=newName;

person[anAttribute]=newName;

Table 2. Direct vs. parametrized access

Option 1 leads to either non-uniform access or standardizing on
dictionaries and foregoing object-oriented modeling. It also means
that even direct access, with all values known at compile-time, must
use the same run time access path, with the order-of-magnitude
performance penalty.

Option 2 is feasible, but has the negative performance conse-
quences we looked at in section 2.1. Option 3, performing the com-
putation of the selectors in an object and reusing that object has the
potential of being much faster.

@interface ValueAccessor MPWObject
{

id target;

NSString *attributeName;

SEL getSelector ,putSelector;
}

@property (strong) NSString *attributeName;

-initWithTarget:aTarget attribute:(NSString*)attrName;

-value;

-(void)setValue:

Q@end

@implementation ValueAccessor

@synthesize attributeName;

-initWithTarget:aTarget attribute:(NSString#)attrName

{
self=[super init];
getSelector=NSSelectorFromString( attrName );
NSString *setName=[attrName capitalizedStringl;
setName=[setName stringByAppendingString:@":"];
setName=[Q@"set" stringByAppendingString:setName];
putSelector=NSSelectorFromString( setName );
return self;

}

-value

{
return [self perform:getSelector];

}

-(void) setValue:newValue

{
[self perform:setSelector with:newValuel;

¥
Listing 8. Class encapsulating message-based attribute access.

A ValueAccessor class implementing this idea is shown
in Listing 8. However, as demonstrated in Listing 9, using this
ValueAccessor class is significantly more verbose and less con-
venient than just using the direct keyed access method of option
2. This means that it is unlikely to be used in a direct-use setting,
so transformation from direct to parametrized use implies a large
change in client code.

In addition, we have to take into account the findings from
section 2.1, which concluded that we are likely to not have uniform
access based on messages only, which option 3 relies on.

Again, we find that although we have several solutions that offer
different trade-offs, no obvious method presents itself for achieving
uniformity of access when parametrized access is involved. In fact
the problems of not having uniform direct access compound the
problems of parametrized access.
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id valueAccessor=[[ValueAccessor alloc]
initWithTarget:person
attributeName:@"name"];

a=[valueAccessor valuel];

Listing 9. Keyed access vs. using a ValueAccessor

2.3 External resources

Interaction with resources outside the application’s memory space
keeps increasing in importance, for example Apple’s Pages DTP
application has 3.9MB of compiled code, but 250MB of non-code
resources in 18792 files (not counting frameworks), and mobile
applications are often just thin wrappers around web-resources
accessible via HTTP [8]. However, API and language support for
abstracting over such resources is limited. In a way that is similar
to the custom stores we looked at in section 2.1, languages make it
difficult to create APIs that separate concerns and respect the UAP.

Listing 10 shows loading an image file from a file using a
convenience API. An instance of the NSBitmapImageRep class is
initialized by reading the file from the absolute file-system path
/Users/john/button.png.

image=[NSBitmapImageRep imageRepWithContentsOfFile:
@"/Users/jo/button.png"];

Listing 10. Accessing an image from the file system

Rather than hiding implementation details and allowing them to
be varied independently, the API used in Listing 10 requires the
caller to expose and determine virtually all implementation details
right at the call site:

1. The fact that we are loading data from a filesystem

2. The name of the image and the full access path to the image,
encoded as a literal string, so the API assumes that strings are
filesystem paths

3. The fact that the image is encoded in the PNG file format

4. The class that will be used to represent the image in code

If we wish to separate the resource name from its access path,
we need to do string processing to combine the two back into a
full path. Using relative paths is dangerous at best because those
are relative to the current working directory, which is global to the
process and not necessarily predictable.

If we wish to load the image from the web rather than from the
local filesystem, we need to change APIs, as shown in Listing 11.
Being URI-based, the API in this example can also be used to
load images from the filesystem, but its additional complexity and
verboseness make the previous convenience API preferable as long
as it is sufficient.

Similarly, if we decide to use a vector file format such as PDF,
we need to change the class to NSPDFImageRep and also need to
change the file name. Finally, if we decide to create the image



uristring=@"http://example.com/button.png"
uri=[NSURL URLWithString:uristring];
image=[NSBitmapImageRep imageRepWithContentsOfURL:uril;

Listing 11. Loading image from web

programmatically rather than loading it from a file, we must change
to a message send [imageProvider button] ;.

We can improve the situation a little by introducing a Resourcer
class like the one shown in Listing 12, which hides differences be-
tween different access methods and base paths, exposing just the
resource name itself.

@interface Resourcer NSObject
{

NSURL =*baseURL;
}

-initWithBaseURLString: (NSStringx*)str;
-objectForKeyedSubscript:key;
-(void)setObject:newValue forKeyedSubscript:key;
@end

@implementation Resourcer

-initWithBaseURLString: (NSStringx*)str

{
self=[super initl;
baseURL=[NSURL URLWithString:str];
return self;

}

-(NSURL*)urlForRelativePath: (NSString*)path
{

return [NSURL URLWithString:path relativeToURL:baseURL]

}
-objectForKeyedSubscript:key
{
NSURL *loc=[self urlForRelativePath:key];
return [NSData dataWithContentsOfURL:1loc];
}

-(void)setObject:newValue forKeyedSubscript:key
{
NSURL *loc=[self urlForRelativePath:key];
[newValue writeToURL:loc atomically:YES];
}
Qend

Listing 12. Resourcer implementation

Once we have a Resourcer instance, access to a specific re-
source is simple: button=resources[@"button.png"]; With
an additional Mapper (not shown) we can map specific resource
types to classes, so retrieving a resource using the syntax above
doesn’t just return raw bytes but initialized instances.

However, as resource [@"button.png"] is still syntactically
different from resource.button, our solution does not conform
the UAP, so if we decide to compute the button image instead
of using a pre-rendered version, we still need to change client
code. At this point we have the same three options discussed in
section 2.1 for bridging the gap between storage and computation:
(1) standardize on dictionary syntax, (2) create individual cover
methods or (3) use a message error handler.

In addition to the problems with these solutions already dis-
cussed, using messaging to access external resources by name has
the additional issue that resource names frequently don’t conform
to language messaging syntax, so either some resources are un-
reachable or some mapping must be created and maintained.

Furthermore, paths with multiple components are difficult to
map to messaging without running into stratification issues: either
the messages are immediately resolved to a resource, in which
case paths with multiple components cannot be expressed, or the
messages just build a path, which must then be resolved to an actual
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resource separately, preferably using a message name that doesn’t
conflict with a potential path component.

This section highlighted a small cross-section of the problems
developers encounter when dealing with external resources. There
are many more and different APIs available, the very abundance of
these APIs suggesting that the problem is not solved.

2.4 Problem Statement Summary

Although we managed to conform fully or at least partially to the
UAP in most of these examples in the end, the results have been
highly unsatisfactory. Why? First, the significant issues identified
with these solutions make it unclear if conforming to the UAP is
worth the cost. Secondly, the very diversity of the solutions, with
little to clearly mark one as favorite, works against the uniformity
that the UAP is trying to achieve.

As we saw in Sections 2.1 and 2.2, the difficulty we had with
custom stores and references was having to map between a message
that performs an operation on a specific L-Value (setName:) and
the combination of the L-Value itself (name) and the operation
(set:).

Language support for the UAP automates this mapping, but only
in a few special cases: when the store being mapped to is instance
variable storage and when the external access is direct. In all other
cases, some of which we have presented here, existing language
support is insufficient and the UAP unravels.

3. Polymorphic Identifiers

Polymorphic Identifiers extend the equivalence between storage
and computation promised by the UAP from built-in instance vari-
able storage to user-defined stores including the filesystem and re-
mote storages such as the web.

Conceptually, Polymorphic Identifiers add multiple, user-defined
stores each with their own kind of L-Values and associated iden-
tifiers. The built-in stores such as instance variables fit within this
framework but do not have special status. Each store defines its
own kind of Load-Update Pair (LUP) [31], rather than having such
pairs defined for each individual L-Value.

The Polymorphic Identifier approach consists of three basic
parts, which were implemented as part of Objective-Smalltalk [35],
a Smalltalk implementation based on the Objective-C runtime:

1. Polymorphic Identifiers (PI) themselves are URIs', with the
scheme-part of the URI designating the actual scheme handler.

2. References are created and used transparently by the run-time
and compiler to mediate access to a specific L-Value identified
by a Polymorphic Identifier. They correspond to the LUP in
Strachey’s model.

3. Scheme-handlers each manage a single store, a set of L-Values.
Scheme-handlers translate from identifiers to references.

Programming languages already support the notion of multiple
stores. Even in C, the identifier a can mean a local variable of a
procedure, which could be in registers, or a global variable stored
in memory at a specific address. With OO languages, a.b can be
direct access to the instance variable b of object a, or it can mean
calling a method aliased to that identifier. Polymorphic Identifiers
regularize and generalize these ad-hoc mechanisms.

3.1 URI syntax

The PI conceptual model maps almost perfectly to URI syntax and
semantics, with the scheme part of the URI designating a store
and the URI representing an L-Value with polymorphic read and
update operations (GET and PUT in HTTP). PIs bring URIs into

! Other syntax variants such as dot notation should also work.
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the language, with compiler and runtime support. In addition to
basic URI syntax, we also support URI templates [15] in order
to support partially varying identifiers with dynamically evaluated
components.

For a programming language, URI syntax is a somewhat un-
usual as it uses the forward slash (°/’) character as a path delimiter,
whereas most programming languages prefer the dot (’.”). However,
it makes it easy to integrate both external and internal resources
with a common syntax, as shown in Listing 13.

person

name

var:person/name
var:person/{attribute}
file://tmp/button.png
http://www.example.com/button.png
file:{env:HOME}/rfcs/{rfcName}

Listing 13. Valid Polymorphic Identifiers

URI syntax is very general, for example XPath [5] query lan-
guage for XML is expressible as URIs, making it possible to ex-
press queries statically as identifiers rather than operationally.

3.2 References

References are the expression of Strachey’s Load-Update Pair
within the Polymorphic Identifier system, they mediate access to a
specific L-Value. Similar to the ValueAccessor class presented in
section 2.2, they hide variations in access mechanics from clients,
but due to compiler support without negative impacts in usability
or performance. References can also be exposed to the user for
generic indirect/parametrized access, with the potential for store-
specific behavior.

Although References can in theory be arbitrary, whatever is
needed to access an L-Value, we have identified three common
cases: indexed references that are offsets to their context, for ex-
ample for local or instance variables within an object, messaging
references that send L-Value-specific messages, and finally keyed
messages that send generic access messages along with a key spec-
ifying the L-Value in question.

Listing 14 shows conceptually how the actual Reference im-
plementation that is used for most in-memory references differs
from the ValueAccessor class shown if Listing 8, with the value
method combing the three modes of access: first the integer offset,
then messaging, and finally keyed access. Which specific access
method is chosen is determined at binding time, with cooperation
from the scheme-handler, the target object, and the source of the
reference.

The key to achieving good performance despite the extra indi-
rection introduced by the References is that binding can be sepa-
rated from evaluation and performed earlier, for example the first
time an object of a specific class is referenced. The effect is similar
to JIT compilers for late-bound messaging inlining accessors, but
without the overhead of compiling during code execution or the
security risks of adding code at run time. When the target object
and its client agree, binding can occur completely at compile time,
compiling away any overhead.

The generic interface to arbitrary L-Values that are Refer-
ences can also be exposed to user programs to fill the need for
parametrized references we discussed in section 2.2. Listing 15
shows example use of a reference that is the equivalent of List-
ing 9.

References have generic behavior in addition to their basic Load
and Update (GET/PUT, value/setValue:) operations: assighment
operations are not handled by the language, but passed on to the
references in questions so copy operations can be optimized. Ex-
amples include streaming data from a web-resource to a file instead
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@interface Reference
{

id target;

int offset;

NSString *attributeName;

SEL getSelector ,putSelector;
}

MPWObject

Q@end
@implementation Reference
-value
{
if ( offset >= 0 ) {
return ((idx)target)[offset];
} else if ( getSelector ) {
return [target perform:getSelector];
} else {
return [target objectForKey:attributeName];
}
}

Listing 14. Reference class extract

valueAccessor := ref:person/name.
name := valueAccessor value.

Listing 15. Using a first class reference

of loading it fully into memory first or performing a copy operation
on a remote server without first downloading the contents and then
uploading it again. References are also capable of listing their child
references, making generic browsing and export to HTTP and file
systems possible.

In addition, references can exhibit additional behavior that is
specific to a particular store. For example, storing a reference to
file in another file results in the creation of a symbolic link, and file
references can retrieve and manipulate meta-data about the file in
question.

3.3 Schemes and scheme-handlers

Schemes in Polymorphic Identifiers serve almost the same role as
schemes in URIs in general: they visibly partition the identifier
namespace and allow specific identifiers to be associated with spe-
cific scheme-handlers. Scheme-handlers manage a specific store,
examples include object instance variables, local variables, dictio-
naries, files and web resources. In addition, composite scheme-
handlers can be used to create new stores by modifying access to
an underlying store, by transforming identifiers or data coming in
and out of the store. These mechanisms provide a rich toolset for
abstracting from details of particular store and providing interoper-
able abstractions on storage.

Unlike Uniform Resource Locators (URLs) [3], URIs do not
specify an access path to a specific location, but rather specify
a name that can then be mapped to a location. Schemes in this
context are also not protocol specifications and do not specify an
actual store, even though they may appear to do so. Instead, scheme
names provide user-visible partitions of the name space that are
mapped dynamically to specific scheme handlers via the special
scheme : scheme that contains scheme-handlers.

The expression scheme:http := URLSchemeResolver new
binds the http: scheme to an instance of the URLSchemeResolver
class. With this definition in place an identifier such as the previ-
ously introduced http://www.example.com/button.png will
actually be resolved by that URLSchemeResolver instance. Al-
though users can just as easily bind the http scheme to a different



scheme-handler, possibly one using completely different storage
or transport or one performing additional actions before sending
an HTTP-request, we will use default scheme-bindings to refer to
scheme-handlers for the remainder to ease the exposition.

Listing 16 shows how a web-resource can be downloaded to
a file or updated from a string literal using plain assignment syn-
tax. This type of compact syntax for dealing with files or web
resources is usually reserved for scripting languages such as the
Bourne shell. In fact, Objective-Smalltalk is used with minor mod-
ifications as a Unix shell and scripting language stsh. Expressions
such as file:{env:HOME}/rfcs/{rfcName}, which resolves to
an RFC specified in the variable rfcName located in the rfcs sub-
directory of the user’s home directory, are very close to the expres-
siveness (and obscurity) of the equivalent Bourne shell expression:
$HOME/rfcs/$rfcName.

file:rfc1738:=http://datatracker.ietf.org/doc/rfc1738.
http://datatracker.ietf.org/doc/rfc1738:=’New RFC’.

Listing 16. Downloading an RFC to a file.

Polymorphic Identifiers bring compact, shell-like expressive-
ness for file and web access to a general purpose programming lan-
guage not as special-cases, but rather as part of a general framework
for making resource access more uniform.

3.3.1 In-memory stores

Although adding file and web references as integrated, first class
objects to a programming language is useful, it solves only parts of
the problems from section 2. In addition, we also wish to integrate
classical variable and attribute access.

In-memory stores such as the local execution context (often
the stack), object instance variables, thread-local and global heap
variables are also managed by scheme-handlers and made available
using Polymorphic Identifiers. Listing 17 shows several examples,
ivar: for instance variable access, local: for the current method
context (“stack”), and thread: for thread local variables.

local:tempAnswer := ivar:myAnswer.
thread:deepThought/privateAnswer := local:tempAnswer.

Listing 17. Different memory variables.

These schemes allow path-based access that is mediated by the
objects in question. They return references of the type shown in
Listing 14 that can be used for keyed or message-based access or
even for accessing directly via an offset into the object.

There is also a global: scheme for globals and a class:
scheme that separates the namespace for instances from that for
classes. Having separate schemes for these different storage classes
is useful when wanting to disambiguate, but can become cum-
bersome in itself. To alleviate this, the composite var: scheme
combines these schemes into a single namespace with prioritized
lookup similar to conventional languages.

The var scheme is also usually bound as the resolver for the
default scheme, which is assigned to identifiers that do not
specify their scheme. Combining the sequential lookup of the
var: scheme and the default scheme allows us to implement
the usually hard-coded identifier lookup rules for plain identifiers
in Smalltalk and other languages using our toolbox of scheme-
handlers.

In addition to the schemes that recreate existing variable lookup,
a number of other useful scheme-handlers have been implemented
so far. We’ve already seen the env: scheme, which provides access
to Unix environment variables.
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A further scheme-handler that is not pre-loaded but available
for defining custom schemes is the SiteMap. A SiteMap stores
arbitrary objects in memory in a tree structure that acts a bit like a
memory filesystem.

3.3.2 Composite scheme-handlers

In addition to the flexible mapping of scheme names to scheme-
handlers discussed earlier, composite schemes provide another
means of abstracting from the specifics of storage and providing
a uniform interface that hides implementation details such as loca-
tion, representation or access patterns. Composite schemes never
provide their own storage, but rather mediate access to one or more
underlying base schemes.

A relative scheme modifies access to its base scheme by making
access relative to a base URI, almost exactly like the Resourcer
class in Listing 12. Listing 18 shows the definition of an rfc:
scheme that points to the IETF web-site. With this scheme mapping
in place, programs can refer to individual RFCs using the identifier
rfc:rfc2396.

base := ref:http://datatracker.ietf.org/doc

scheme:rfc:=RelativeScheme schemeWithBase: base.

Listing 18. Defining a custom rfc: scheme.

Relative schemes are the basis for decoupling application-level
intent from specific resource implementations and most schemes in
use in a program will be user-defined schemes that at some point
resolve to a base scheme via a relative scheme.

Rather than modifying the identifier, a filter scheme modifies the
data coming from or going to its base scheme, similar to stacked
filesystem that provide transparent encryption or compression ser-
vices. The Mapper class mentioned earlier that deserializes raw
bytes into application-specific objects based on their MIME type
and a user-defined table mapping MIME types to classes is a prime
candidate for such a filter.

Sequential schemes were already introduced in the previous
section when defining the var: scheme, they just search a number
of base schemes for the L-Value in question. A caching scheme
also scans two base schemes sequentially, but deposits any values
found in the scheme scanned first. Fig. 1 shows how multiple
caching schemes can be combined with file and memory stores and
an actual HTTP protocol handler handlers to construct an http:
scheme-handler that caches retrieved resources both on disk and in

memory.
4%’71 ——— 7 S~
tempdir Client
(rel) memory

Figure 1. http: scheme-handler with caching, composed from
simpler schemes
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Composite scheme-handlers make it possible to abstract from
many details of storage such as location, optimized access mecha-
nisms and data formats while at the same time enabling expressive-
ness very similar to specialized scripting languages in a general
purpose programming language.

4. Evaluation

Having introduced Polymorphic Identifiers, we must now show
whether they solve the problems we had in section 2 implementing
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the Uniform Access Principle, particularly if we can provide uni-
form access to custom stores without requiring code-bloat at either
the call site or the called object. In addition, it should be possible
to integrate references to external files, abstracting from specific
location and media types. Finally, all this should be accomplished
without major impacts to performance.

First, let’s look at substituting a dictionary with an object or
vice versa. Listing 19 shows how to access the name property of an
object or a dictionary using Polymorphic Identifiers. The access
syntax is the same, because the var: scheme handler uses the
Reference class we showed earlier that uses messaging or keyed
access transparently.

name := Var:person/name
var:person/name := newName.

Listing 19. Accessing a dictionary or object via PI.

We have already shown how to provide a reference to an object
via the ref: scheme, so getting a reference to the person object
is as simple as valueRef := ref:person, which is significantly
less code to write than the code in Listing 9. As before, this uses
the Reference class to perform the access, so it works with both
keyed access and messaging.

External resources are slightly more challenging. We could use
button := http://www.example.com/button.png, but that
actually still encodes path information. Better to create a image:
relative scheme pointing to http://www.example.com. With
that, we refer to the button as image : button.png, which is much
easier to point to another location, for example by initializing the
image: scheme with a file path. Furthermore, the image: scheme
should also probably include a filter that converts PNG image data
to image objects, so the object retrieved with image :button.png
is directly usable. Finally, we can add another filter that automati-
cally adds the file extension, leaving the identifier image : button.
With these few simple steps, we have not only made the original
image reference more compact and expressive, we have also ab-
stracted from the data source, format and location sufficiently that
we can replace the file retrieval with a computation if we want to
do so.

Using Polymorphic Identifiers to access resources makes con-
formance to the UAP automatic for in-memory stores such as ob-
jects and dictionaries, independent of whether access is direct or
parametrized, and without trade-offs in terms of duplicated boil-
erplate code. Although not quite as automatic as the in-memory
stores, PIs also make external resources such as files accessible to
the UAP with very little effort.

4.1 Performance

In addition to duplicated boilerplate code, one of the problems
with the methods for achieving uniform access in section 2 was
performance. Table 3 compares the performance of the different
methods for compensating the differences between a dictionary as
a custom store and an object using native instance variables and
messages to access them.

Each column of table 3 represents one (uniform) access method,
with the rows being the underlying stores that are being accessed.
Times are reported in nanoseconds per access. Tests were run on a
2012 MacBook Pro 13” with 2.9 GHz Core i7 processor, the code
was self-timing using the getrusage () call and an automatically
adjusted iteration count that ensures each test runs for at least
1/10th of a second. Three runs were averaged.

The Message column shows the times for using messages or
properties to access, so person.name for the name property of the
person objects. This access methods is native for the object but re-
quires cover methods for the dictionary. With object based storage,
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it is the second fastest access method overall, with dictionary based
storage the third fastest.

The Keyed column shows the times for keyed access, which
is native for the dictionary but requires a cover method mapping
keys to messages for the object. As noted earlier, keyed access
for object-based storage is actually 2x slower than pure dictionary
access and 20x slower than native object access, so using keyed
access is not tenable from a performance point of view.

The times for Polymorphic Identifiers are shown in two columns.
The first, labeled Polymorphic Identifier shows access times when
the Reference object negotiates message-based and keyed access.
These are each slightly slower than the access underlying access
mechanism, 25% for object based storage (third fastest) and 7.5%
for dictionary based storage (second fastest for dictionaries).

The second column, labeled Polymorphic Identifier/Offset,
shows the access time when the Reference object is able to ne-
gotiate direct access. This is 12% faster than using a message, and
fastest overall, despite the fact that it retains even more flexibility
than a message send. Direct access to a public instance variable
would of course be faster still, but would not be provide uniform
access.

The other alternative for unifying access via messaging, using
the forwardInvoction takes over 2 microseconds for the case of
underlying dictionary storage so isn’t a viable option. It is also left
out of Fig. 2 comparing the results visually, because it wouldn’t fit.
In fact, 2 microseconds is sufficiently slow that it is the only access
method that has a noticeable impact on small file operations, adding
more than 25% to the time for a cached read of a 36KB file.

Access method speed (ns/access)

Storage
50 I Object Dictionary
40
30
20
10
0 _— | ]

Keyed Message Pl PI/Offset

Figure 2. Performance

In performance terms, Polymorphic Identifiers are faster than
or at least competitive with the fastest of the methods for achieving
uniform resource access that we looked at. However, those compar-
isons are with methods that were deemed unacceptable due to the
code bloat introduced. When comparing with methods that have a
similar code footprint, performance of Polymorphic Identifiers is
much better, ranging from 2x to 80x better.

4.2 Applications

In addition to scripting tasks using stsh, Polymorphic Identi-
fiers have been used in a number of applications, ranging from
an iPad language learning game, the site generator that produces
the objective.st web-site to a live remote IDE that uses HTTP
to upload code and download debug information from running pro-
cesses. Fig. 3 has three IDE windows that show, respectively, the
setup code for the web-site, the part of the IDE code itself that
uploads new method definitions, and finally a window with a live



Storage Keyed | Message | Polymorphic Identifier | Polymorphic Identifier/Offset | forwardInvocation
Object 58.7 2.50 3.11 222 248
Dictionary | 24.2 26.2 25.9 29.3 2051

Table 3. Time per access in nanoseconds for different access methods and stores
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Figure 3. Polymorphic Identifiers in use

connection to the language learning game running on the iOS sim-
ulator in the background.

The game has a large number of graphical assets that could
be used much more simply in code by using special schemes for
accessing app resources, though the overall impact was not very
high due to large amounts of layout logic. The IDE was initially
completely written in Objective-C, but dealing with remote re-
sources was so cumbersome that those parts were rewritten using
Objective-Smalltalk with Polymorphic Identifiers.

The application that gained most from Polymorphic Identifiers
was the site generator: the asset pipeline consisting of static con-
tent, templating mechanism, dynamic content and a page cache
could be directly expressed as a series of connected scheme-
handlers. The object that dynamically generates the site’s root
is placed there using the simple assignment: dynamic:/ :=
MPWMainPage

5. Related Work

Self [32] and Newspeak [4] take the messaging approach to its log-
ical conclusion by making all identifiers message-sends and there-
fore late-bound, eliminating all nouns and replacing them with
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verbs?. Although this elimination of L-Values as a simplification is
conceptually elegant, it leads to the problems we have shown, be-
cause whereas an identifier associated with an L-Value has a Load-
Update Pair, an identifier associated with a message can only be ex-
ecuted, so Load and Update must be separate identifiers. The fact
that these separate identifiers are only related by convention and
must be derived from each other at times “left a complexity that
bothers us to this day” [33]. Handling the assignment part of re-
source access leads to ad-hoc rules and mechanisms to tie together
the slot accessor methods that Ungar and Smith say “troubled us a
bit” [33].

Polymorphic Identifiers are a result of the same basic premise
that identifiers should always be late-bound. However, it doesn’t
follow the apparent implicit assumption that only messaging can
be late-bound and therefore identifiers must be messages in order
to be late-bound, and the related assumption that interfaces must
therefore be message-based.

This assumption certainly doesn’t apply to the World Wide
Web and the REST architectural style [9], where it is (universal)
resource identifiers that are the interfaces, and messaging is the
hidden implementation detail. This approach is taken to its logical

2 Literals are the exception



extreme by by Resource Oriented Computing [12], which encodes
all computation into identifiers, with an action: scheme that is “a
functional programming language encoded as a URI”.

Although scheme-handlers can be exported via http, Polymor-
phic Identifiers leave the decision of whether to present a messag-
ing or a resource-based interface to the developers, similar to prop-
erties in C# [1] and Objective-C 2.0 [20], which closely match the
proposal in [29]. Properties are syntactic sugar for a pair of ac-
cessor methods and allow clients to use plain identifiers syntax to
access values via message-sends, including assignment for setting
the value. However, properties are just syntactic sugar for one type
of resource access, they are not user-extensible like Polymorphic
Identifiers and don’t integrate access to external resources or first
class references.

Common LISP [30] has symbol-macrolet, which was explic-
itly limited to lexical scoping due to fears that having simple iden-
tifiers with overloaded meaning could be confusing [11], echoing
similar concerns by the creators of Smalltalk-72 of syntax that
was too flexible [19]. Having clear syntactic markers in the form
of scheme-prefixes and directly associating each prefix with one
scheme-handler in Polymorphic Identifiers avoids confusion as to
the meaning of specific identifiers.

The E language [23] supports URI-Expressions as a direct lan-
guage feature using angle brackets for access to resources such as
files: (file:/home/marcs/myFile.txt), and to the underlying

Java classes: (unsafe:java.util.makeCalendar>.getYEARQ)).

E even allows custom schemes to be defined, but only for read-
access, separate from other identifiers and without the ability to
extract references.

A different approach to resource access comes from the op-
erating system community: Plan9 integrates a wide variety of lo-
cal and remote [27] resources and services into a single directory
tree [26] that is made available on a per-process basis, but medi-
ated by the kernel and accessed only indirectly via system calls and
string-based identifiers. User level filesystems like FUSE [28] or
the BSD Pass-to-User-Space [18] system bring some of these ideas
to commercial operating systems, but make these filesystems visi-
ble globally to all processes on a machines.
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Polymorphic Identifiers are similar to Embedded Domain Spe-
cific Languages [17] in that they allow domain-specific language
elements to be added to a language, rather than having to create
a completely new language with an external DSL or attempt to
achieve the desired effect with an internal DSL[10].

Like polymorphic embedding of DSLs [16], Polymorphic Iden-
tifiers allow a single syntax to be used with multiple, pluggable se-
mantic interpretations permitting composition of functionality [6].
However, Polymorphic Identifiers are applicable to general purpose
programming languages, not just DSLs, while at the same time re-
stricting their focus to the identifiers used.

6. Summary and Outlook

We have introduced Polymorphic Identifiers, a mechanism for ab-
stracting over storage in a way similar to the way that messag-
ing abstracts over computation. Polymorphic Identifiers solve prob-
lems encountered when attempting to extend the Uniform Access
Principle to custom stores, parametrized access and external re-
sources.

The uniformity of the syntax and the use of common interfaces
for scheme-handlers enables polymorphic behavior for resource ac-
cess, permitting different scheme-handlers to be substituted without
affecting client code. Application-specific schemes make it easy to
hide storage details such as access mechanisms, protocols or paths.
Custom scheme-handlers can be implemented as normal objects
and added to the language, or even composed from pre-existing
handlers and combinators.

With the user-extensible identifier architecture of Polymorphic
Identifiers, it becomes possible to add abstraction and information-
hiding capabilities to identifiers and expand the use of REST-style
programming beyond network and Web-environments.
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