Improving Hosted
Continuous Integration
Services

Christopher Weyand, Jonas Chromik, Lennard Wolf,
Steffen Kotte, Konstantin Haase, Tim Felgentreff,
Jens Lincke, Robert Hirschfeld

Technische Berichte Nr. 108

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\3,0&\]61'81}5
. ‘ Hasso
@ﬁ@ Plattner
A <D Institut

° &Q’ IT Systems Engineering | Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitdt Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitat Potsdam | 108

Christopher Weyand | Jonas Chromik | Lennard Wolf | Steffen Kétte |
Konstantin Haase | Tim Felgentreff | Jens Lincke | Robert Hirschfeld

Improving Hosted Continuous Integration Services

Universitdtsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet tiber http://dnb.dnb.de/ abrufbar.

Universititsverlag Potsdam 2017
http:/ /verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitiat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts fiir Softwaresystemtechnik
an der Universitdt Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschiitzt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-377-0
Zugleich online veroffentlicht auf dem Publikationsserver der Universitiat Potsdam:

URN urn:nbn:de:kobv:517-opus4-94251
http:/ /nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94251

mailto:verlag@uni-potsdam.de

Preface

Developing large software projects is a complicated task which can be demanding
for developers. Continuous integration (CI) is a common practice involving frequent
testing and integration of changesets to keep them small and hence easily comprehen-
sible. With CI, programmers can reduce complexity and effort. Travis Cl is a service
that offers continuous integration and continuous deployment. Software projects are
built, tested, and deployed using the Travis CI infrastructure without interrupting
the development process. This report describes the architecture of Travis CI, presents
how periodic building is implemented, proposes a feature addition for dependent
builds, and discusses ways of visualizing data generated by the CI process.

July 2016 The Authors

Grof3e Softwareprojekte zu entwickeln, ist eine komplizierte Aufgabe und fordernd
fiir Entwickler. Kontinuierliche Integration ist eine verbreitete Praxis zur Komple-
xititsreduktion. Durch haufiges Integrieren und Testen werden Anderungen klein
gehalten und sind daher tibersichtlich. Travis CI ist ein Dienst, der kontinuierliche
Integration und kontinuierliche Bereitstellung anbietet. Softwareprojekte werden
durch die Travis CI Infrastruktur gebaut, getestet und bereitgestellt, ohne dass der
Entwicklungsprozess unterbrochen wird. Dieser Bericht beschreibt Architektur und
Funktionsweise von Travis CI, zeigt wie periodisches Bauen implementiert wurde,
schldagt eine Funktionserweiterung fiir Buildsequenzen entlang von Abhédngigkeits-
baumen vor und analysiert, wie CI-Daten visualisiert werden kénnen.

Juli 2016 Die Autoren

Contents

1 Introduction|

2 The Architecture of Travis CJ|
[2.1 Introduction| L
2.2 Background| o oo oo
[2.3 Approach|.
[2.4 Travis Implementation| 00000
[2.5 Evaluation|
2.6 Future Work and Conclusionl

[3 Interfaces for Expressing Periodic Task Schedules|
[3.1 Introduction| Lo o
....................................
...................................
[3.4 Approach|.
[3.5 Implementation 0000
[3.6 Evaluation|
[3.7 Related Work|
[3.8 Conclusion|. o

[4 Dependency Management for Hosted Continuous Integration Services|

[4.1 Introduction| Lo
[4.2 Background| o oo oo
[4.3 Motivation| oo
[4.4 Approachl. o o oo
[4.5 Implementation| o 00 L.
[4.6 Evaluation|
[4.7 Related Work| oo 0o
[4.8 FutureWork|
[4.9 Conclusion|.

vii

Contents

[5 Visualizing Build Data in Continuous Integration Services| 85
[5.1 Introduction| Lo 85
[5.2 Stateofthe Art{. 85
................................... 91
[5.4 Approachl. o 92
[5.5 Implementation| 0. 96
[5.6 Evaluation| 103
[5.7 Related Work| 104
[5.8 FutureWork| 106
[5.0 Conclusion|. 107

|6 Conclusion| 109

viii

1 Introduction

Continuous integration (CI) is an important practice in agile software development.
Since Cl infrastructures are usually very sophisticated and complex to set up, hosted
continuous integration services have become popular in the past years. Travis Cl is
one such service for projects hosted on GitHub.

Although Travis CI offers fully functional continuous testing and deployment for
many programming languages and platformes, it still lacks some features common
to other CI tools. In particular, a way of coping with dependencies, as well as a web
page presenting useful information about the software project are missing. These
issues are addressed in this report.

We present and analyze the structure of the micro-service architecture of Travis
CI, as well as the collaboration of the individual components. Using this knowledge
we propose two different approaches to dealing with software dependencies. The
first approach is building and testing projects periodically. Problematic changes in
dependencies will lead to failing tests, causing Travis CI to inform the developers
about the failure. The second approach introduces an interface for modeling depen-
dency relationships in graphs, along which build sequences can run. With these,
projects can be built whenever its dependencies were modified. For creating a web
page presenting information about the software project, we analyzed which infor-
mation is useful for software developers and project managers. We propose charts
and data to be displayed on such a web page.

This report is structured as follows: Chapter |2|describes the micro-service archi-
tecture of Travis CL. Chapter [3| proposes different means of expressing schedules for
periodic building. Chapter [g] presents the interface for dependency graphs and the
build sequences resulting from them. Chapter [5|analyzes which charts and data are
useful for developers and introduces an overview page that combines them.

2 The Architecture of Travis CI

Travis CI is a hosted continuous integration service structured as a microservice archi-
tecture. The modular components, although minimally coupled, are complex subsystems
running in the cloud. Due to Travis” utilization of intertwined software libraries and sophis-
ticated programming mechanics, an exhaustive understanding of the system’s construction
is nontrivial. Providing the basis for an evaluation of the architecture’s modularity, exten-
sibility, and scalability, this chapter describes the overall architecture as well as the most
crucial subcomponents.

2.1 Introduction

The hosted continuous integration service Travis CI helps software developers verify
that new changes are correctly integrated into the main source of files under version
control. It therefore executes automated tests on virtual machines running in the
cloud and informs the developer about the results. Built as a microservice architec-
ture, Travis is limited to the repository hosting service GitHub, where all of Travis’
modules are also developed.

For Travis users concerned with security issues or open source developers trying
to improve Travis, it is crucial to understand Travis’ system as a whole as well as the
most important subcomponents. However, achieving an exhaustive understanding
of the system only by reading the documentation and the source code requires dis-
proportional effort. This is due to the large number of external dependencies and
libraries, the years of experience the developers put into Travis, and the intrinsic
complexity of a microservice architecture [4) p. 49]. A comprehensive description
of the system would ease improvements and other work related to the Travis sys-
tem. Therefore this chapter describes the architectural approach in general and the
implementation of each submodule in detail.

2.2 Background

Continuous integration (CI) is a common practice of software engineering [5, 7||.
Applying continuous integration presupposes that the developer team maintains
the source files under version control. Every developer creates a working copy of the
source files, changes them, and finally integrates his work back into the mainline of
the shared repository. The longer a working copy is separated, the more it diverges
from the mainline. To prevent merge conflicts the integration is done at least daily [19].
Automated tests verify the success of the integration process. Therefore continuous

2 The Architecture of Travis CI

integration encourages exhaustive testing or even test driven development. The tools
and services to perform these tests run asynchronously to reduce time and effort
for the developer. Additionally they set up a clean test environment, because every
previous change that could affect the test execution makes it more difficult to identify
errors.

Historically CI services ran on a local setup. Direct access to the machines running
the tests is secure and the process is easily monitorable. Most local services offer
extensive support for plugins, scripts, and all means of customization. While agile
software development became more common, the cloud based services provided a
simpler interface and did not need in-house computing power. They suffice for the
average customer’s needs, in trade for complex configuration settings and access to
running hardware. Nevertheless, large companies still prefer local testing servers
because of security concerns.

A popular open source tool for continuous integration on a local setup is Jenkinsf|
There are many similar tools, such as Strider CDf|or GoCDP](developed by Thought-
Works, where Martin Fowler did research on continuous integration).

A cloud based approach can provide more comfort and simplicity for the user.
Most cloud based CI services just require access to the repository hosting service and
a simple configuration file within the source repository. Since the tests either run on
servers hosted by the CI service or on virtual machines in the cloud, neither own
hardware nor maintenance are required. The hosted CI service can manage builds
on different operating systems as well as concurrent builds. Every service comes
with its own advantages and drawbacks. AppVeyor unlike most other services, fea-
tures Windows, MagnumClIP|supports GitHub, GitLab, and Bitbucket as repository
hosting services, Codeshipuses Docker, SnapC represents ThoughtWorks cloud
complement to GoCD, and CloudBeesﬂ resembles a cloud based Jenkins. However,
the most popularf|hosted continuous integration service is TravisCI['%| Inspired by a
hosted CI service for Ruby and Rails projects called RunCodeRun|| Travis developed
from a small idea and the work of a few developers [21] into a global, successful
company.

Thttps://jenkins.io/ (visited on 2016-06-13).
2https://github.com/Strider-CD/strider (visited on 2016-06-13).
3https://www.thoughtworks.com/go/ (visited on 2016-06-13).
4http://www.appveyor.com/| (visited on 2016-06-13).
Shttps://magnum-ci.com/ (visited on 2016-06-13).
%https://codeship.com/ (visited on 2016-06-13).
7https://snap-ci.com/| (visited on 2016-06-13).
Shttps://www.cloudbees.com/ (visited on 2016-06-13).
9In fact the GitHub developer documentation on building a CI service mentions Travis and
Jenkins as the alternatives to building it yourself.
Ohttps://travis-ci.org/ (visited on 2016-06-13).
"http://thinkrelevance.com/blog/2008/10/14/runcoderun-now-open-to-the-
anonymous-public-2 (visited on 2016-06-13).

https://jenkins.io/
https://github.com/Strider-CD/strider
https://www.thoughtworks.com/go/
http://www.appveyor.com/
https://magnum-ci.com/
https://codeship.com/
https://snap-ci.com/
https://www.cloudbees.com/
https://travis-ci.org/
http://thinkrelevance.com/blog/2008/10/14/runcoderun-now-open-to-the-anonymous-public-2
http://thinkrelevance.com/blog/2008/10/14/runcoderun-now-open-to-the-anonymous-public-2

2.3 Approach

2.3 Approach

In this Section, we will describe Travis” service and its structure in general. We intro-
duce the central modules of the microservice architecture and divide them between
the primary build sequence (life cycle of accepting, evaluating, and executing) and
the secondary post execution steps. The former includes the necessary modules
to run a test while the latter represents all additional steps during and after the
execution.

Travis is a hosted continuous integration and continuous deployment service for
the repository hosting service GitHub. Its main purpose is the execution of test in so
called builds and the optional deployment of the tested software. A build is created
each time a developer pushes a change to the shared repository. A build includes
one or more jobs, which set up the target project and execute the tests. Different
programming languages are supported for the target project.

Their build flow is shown in Figure

¥ ? & b

Figure 2.1: Travis Build Flow taken from travis-ci.org

2 The Architecture of Travis CI

Listing 2.1: A simple configuration file for a Smalltalk repository

language: smalltalk

smalltalk:
- Squeak5.0
- Squeak4.6
0s:
- linux
- 0SXx

There is a website to show the build results to the usef| The Travis website pro-
vides information about all previous builds and jobs as well as the settings for each
repository. The logs of a running job can even be viewed as they get generated. Ad-
ditionally there exists a command line client as a ruby gem. Both, Travis Web and
Travis CLI access their data through the public Travis API[?|

A configuration file"¥] specifies the programming language, the operating system
to use during testing, and the deployment options. Furthermore the user can add
custom scripts and configure most execution steps [46]]. Eventually each build leads
to a matrix of jobs including all combinations of different expandable parameters.

As an example the file in Listing[2.1would result in a build with four jobs: Squeaks.o
and Squeak4.6 each on Linux and on OS X.

2.3.1 Life Cycle of Accepting, Evaluating, and Executing

The life cycle of accepting, evaluating, and executing a build request is the core of
Travis” functionality from accepting the GitHub event to the execution of software
tests. It starts, when a user pushes a source code change to GitHub or a pull request
is opened.

Listener Responsible for listening to these changes is Travis Listener. GitHub offers
a hook to inform the Listener or other services about events. The Listener creates a
build request and starts the build pipeline to process the recognized action.

Gatekeeper After the Listener created the build request the Gatekeeper picks it up.
Gatekeeper approves and configures the build request. By fetching the configuration
file (. travis.yml) from the GitHub repository, it can create a build entry in the
main database. The matrix yields one or more jobs, which are associated with the
build record. All those jobs are initially in a “created” state, awaiting execution.

Phttps://travis-ci.org (visited on 2016-06-16). The page for Travis CI Enterprise is
available under https://travis-ci.com (visited on 2016-06-15).

Bhttps://api.travis-ci.org (visited on 2016-06-03).

"4 Travis’ configuration files must be called .travis.yml and placed into the repository root.

https://travis-ci.org
https://travis-ci.com
https://api.travis-ci.org

2.3 Approach

ATR

§

EA5) The Story of a Build Request

Listener — Gatekeeper Scheduler Worker Build

| o |

Tasks Live

GitHub l

API Web

A\

Figure 2.2: The Story of a Build Request made by Travis

Scheduler The third element in the life cycle of accepting, evaluating, and execut-
ing a build request is Travis Scheduler. The Scheduler continuously fetches all jobs
in the “created” state from the main database. Then it groups them by their owner,
which is a GitHub organization or a single user. The Scheduler evaluates the amount
of jobs to be queued for that owner. Every user and organization has a limit of jobs
that are allowed to run concurrently. For example if there are three running jobs and
the developer’s concurrency limit is five, it queues two more jobs. To queue a job
means to signal that it is ready to be executed by a Worker.

Worker Travis Worker is the final element of the primary life cycle. Travis runs
multiple Worker instances simultaneously to handle the high load on the system.
They start virtual machines (VM’s) on different cloud providers like Amazon EC2
and MacStadium and run a shell script on the VM. The script contains the setup of
the target project and the tests for a job. Once the script is finished the Worker is
ready to execute the next job.

vi1i

2 The Architecture of Travis CI

2.3.2 Post Execution Steps

Travis

=3

1] d\scardheverr‘y
4 vent other tha ;
8 othent travis.yml
S reveiveevent | Pull request
from Github
g
2
i
) H
2} : central postgres
database
1
3 ; create build
] approve build configure build | oCreate build
2 ecord including|
3 request ‘ request ‘at eastonal o
4
o
wesE T K B
= actually scheduler active jobs I
g runs permanently queucia
z X check active pending jobs for
: jobs for owner o respocting the | .o+
K job limit |-
>= jobLimit ; .
: \ ; H
J . finished
5 A : build execution
g execute bash K B
g L e ; >t 20
g by travis-build - >
state changgz=s. m oz ; :
‘17.{:9‘,, log part ready :
\‘n : :
X :
G : ¥
)
o |
" : rchive log to S:
3 : eceive streame notify web pdate databas ik
: purge
3 : logs withiloglpart database togs
H finished archived log
: processing log part
] receive status ‘ pdate databas; emit event Bhotaredor
it evi .
I update r .| buiid:finished
A
1
9
M receive hub notify various
K event [P services

ish
processing worker
state change

notification for
notification E Eweb via pusher

various services

Figure 2.3: Travis’ central Business Process

Travis” work is not done with the execution of the tests by Worker. For users to
be able to access relevant data about their tests, Travis needs to save logs, maintain
a database, send out notifications via various services, provide a way to access this
data, and possibly execute a deployment step if the build was successful. There are
various deployment options|like Heroku, Launchpad, or NPM.

To realize these functions Travis uses the Hub, Logs and Tasks modules. Travis Web
and Travis CLI furthermore provide access to the required data, using Travis API.
The deployment is done by the Worker after it finishes a successful build. Travis
maintains a Ruby Gem called Dpl to support the deployment to other providers.

Shttps://docs.travis-ci.com/user/deployment/ (visited on 2016-06-15).

https://docs.travis-ci.com/user/deployment/

2.4 Travis Implementation

Hub Each time the state of the job changes Worker sends a message that will be
processed by Travis Hub. Hub then changes the job’s state in the database and sets the
attributes concerning that state change. If all jobs of a build are finished, it sets state
of the corresponding build as well. Also Hub emits events like build: finished for
the Tasks module.

Logs During execution Worker streams the log to Travis Logs. The log is streamed
in parts, which are temporarily stored in the database and can be assembled to the
complete log on demand. When the job is finished, Logs archives the complete file
to Amazon S3 and the database records are purged.

Tasks Tasks receives events from Hub and sends notifications to the user via E-
Mail, Slack etc. It also updates the Web UI of Travis and GitHub.

2.4 Travis Implementation

This Section separately describes each major component of Travis architecture in-
troduced in Section or In order of participation in the build processing,
these components are Listener, Gatekeeper, Scheduler, Worker, Hub, Logs, and Tasks.
Unlike the others, Gatekeeper is not open source and thus omitted in this section.
All information presented in this section is based on Travis” source code and readme
files, which are accessible via GitHub.

Travis is implemented as a microservice architecture, which parts are deployed
to Heroku. In addition to a GitHub repository for each service, Travis has multiple
shared helper repositories. For example travis-migrations holds all database migra-
tions, travis-core contains code for Gatekeeper and API, and travis-ci acts as a central
issue tracker. Figure shows a detailed overview, which is relevant for all Subsec-
tions.

2.4.1 Travis Listener

Travis Listener comes first in the build pipeline. Triggered by a user action, GitHub
informs the Listener about the event. If the action should start the execution of a
build, i.e. is a push or pull event on GitHub, Listener notifies Gatekeeper. Written in
Ruby (as most Travis modules are), this Sinatra application discards all other event
types. The notification send to Gatekeeper is called a build request and is transferred
using Redis and Sidekiq (see Figure [2.5).

Listener utilizes a GitHub Webhook, Raven, Metriks and Rack, which Sidekiq
depends on. The Listener is deployed on Heroku with Unicorn.

The predefined GitHub Webhook listens for GitHub events and sends a POST
request with a payload to the Listeners URL as configured. The URL is http://
notify.travis-ci.org. A default GitHub Webhook processes only push events.
Although the listener discards most of it, the GitHub service sends push, pull request,
issue comment, public, and member events as seen in Listing [2.2} A public event is

http://notify.travis-ci.org
http://notify.travis-ci.org

2 The Architecture of Travis CI

» Notification (E-Mail/Slack etc) Browser Travis Web cLl
(ember)
HTTP Request Archltegture
Overview
B £
EJ § T is List Publish Request
g| | & [fravististener —— Travis Tasks
E © Sldequ + Job state PUSher
s Redis notification
S
S e . .
g notifies | Travis Live
© A
Travis Gatekeeper Save datarequests, builds, jobs) —— TravisAPl -
i v
L ‘E/;Z:;J;f;:z:onllmg s uses Travis Core
permissions, orgs | Database Main
Build request . N
C T Job status e
L—» GitHub Sync ’
Travis Hub
Listen for Job update A Query

created

| <—|— Scheduler —
Publish Job

. Send L
Rabbit MQ » Travis Logs Lt
Consume from logs.” queue
Consume from Publish Job updates and
builds.<something> Logs
queues
. Generate Build Script . . Amazon S3
. » Travis Build
(multiple) Sidekiq o
ssh ¢ Redis
VM Provider (Blue Box, MacStadium, EC2) All use Travis Support
v Build VMs

Figure 2.4: Architecture Overview made by Travis

GitHub Webhook events

Sidekiq +
Redis

Listener —nbuild requests—»

Figure 2.5: Travis Listener Overview

10

v12

2.4 Travis Implementation

Listing 2.2: github/github-services/lib/services/travis.rb

default_events :push, :pull_request, :issue_comment, :public, :member

[...]

def receive_event
http.ssl[:verify] = false
http.basic_auth user, token
http.headers[’X-GitHub-Event’] = event.to_s
http.headers[’X-GitHub-GUID’] = delivery_guid.to_s
http_post travis_url, :payload => generate_json(payload)
end

triggered by a private repository becoming open source and a member event signals
that a new user was added as a collaborator9]

As the Listener’s core functionality is to listens on POST requests, the applica-
tion is a subclass of Sinatra: :Base. On a POST request, if the payload exists and
the IP is valid, it calls the handle_event method. Finally, if the event type is push
or pull_request a build request is published using the Sidekiq queue “build_re-
quests” to which the Gatekeeper Service subscribes. The handle_event method is
shown in Listing Discarding all events except for push events or pull request is
done at line 8o with the handle_event? check.

Listing 2.3: travis-listener/lib/travis/listener /app.rb

def handle_event
return unless handle_event?
debug ”Event payload for #{uuid}: #{payload.inspect}”
log_event(event_details, uuid: uuid, [...] , repository: slug)
Travis::Sidekiq: :BuildRequest.perform_async(data)

end

def handle_event?
settings.events.include? (event_type)
end

2.4.2 Travis Scheduler

After Gatekeeper created the database records for a build and its jobs, Travis Sched-
uler identifies pending jobs in the database and queues them. To queue a job means
to assign it to a waiting Worker. All pending jobs, meaning that they are in created
state, are queued with respect to their owner’s concurrency limit. For open source
projects the default limit is five. An overview of the Scheduler is shown in Figure

16https ://developer.github.com/v3/activity/events/types/
(visited on 2016-06-10).

11

https://developer.github.com/v3/activity/events/types/

2 The Architecture of Travis CI

Sidekiq

"pusher-live"

notify live
]

read created jobs

. "builds.<os>" queue jobs
R Nl(l < E
abbit nqueuedJobs write queued jobs DB

starts periodically

Timer

Figure 2.6: Travis Scheduler Overview

Initialization
When Scheduler is deployed, it executes the methods setup and run. Listing[2.4]
shows the implementation of these methods. Setup calls multiple other setup meth-
ods to configure RabbitMQ), the database, exception handling with Raven, Metriks,
Sidekiq and feature flags for the application. There is a separate Travis repository
for AMQIE7|which is included in the gemspec. The Schedule class therefore requires
travis/amqp to call Travis::Amgp.setup(config.amqgp.to_h). After setting
up the client for RabbitMQ, the scheduler connects to the database. The configu-
ration either refers to travis_development or travis_production as database
depending on the environment. Metriks is used throughout the scheduler to mea-
sure execution times. Finally the scheduler configures Sidekiq to communicate with
Redis and the last setup method prepares to handle feature flags using Rollout.
Subsequently the Scheduler starts its work by entering an endless main loop that
is executed periodically in intervals specified in Schedulers configuration file. The
method enqueue_jobs_periodically starts the enqueuing after acquiring a lock
on the database. Like most steps performed by the Scheduler, this is measured by
Metriks.

Listing 2.4: travis-scheduler/lib/travis/scheduler/schedule.rb

def setup
Travis::Amgp.setup(config.amqgp.to_h)
Travis::Database.connect(config.database.to_h)
Travis::Exceptions::Reporter.start
Travis::Metrics.setup

7https://github.com/travis-ci/travis-amqgp| (visited on 2016-06-10).

12

https://github.com/travis-ci/travis-amqp

2.4 Travis Implementation

Support::Sidekiq.setup(config)
Support::Features.setup(config)

declare_exchanges_and_queues
end

def run

enqueue_jobs_periodically
end

Enqueue Jobs

created jobs -

queued jobs

each owner

- J

ﬁoop for \

Figure 2.7: Activity Diagram for the Enqueue]obs Class

The periodic execution begins with the instantiation of the Enqueue]obs class,

which contains the actual queuing code (see in Figure[2.7). Initially that class groups
all jobs by owner and enters a loop over all owners and their jobs. After computing
how many jobs are queueable for each owner up to their specific concurrency limit,
the queueable jobs are enqueued as seen in Listing [2.5]

To queue a job, three things have to be done:

1. publish the event to RabbitMQ for the workers to pick up,

2. update the database,
3. notify Travis Live about the change so the Web Ul can be updated.

To achieve that, the Enqueue]obs service utilizes AMQP to publish to RabbitMQ,
updates the job attributes directly in the database via the Active Record model (which
includes setting queued_at to the current time), and calls a helper method to make

13

2 The Architecture of Travis CI

Listing 2.5: travis-scheduler/lib/travis/scheduler/services/enqueue_jobs.rb

def enqueue_all

grouped_jobs = jobs.group_by(&:owner)

[...]

grouped_jobs.each do |owner, jobs|
next unless owner
[...]
limit = strategy.new(owner, jobs)
Travis.logger.info ”About to evaluate jobs for: #{owner.login}.”
queueable = limit.queueable

[...]
enqueue (queueable)
[...]

end

end

Sidekiq push the payload to the “pusher-live” queue. Actually the architecture visu-
alization (Figure [2.4]in Section [2.4) does not show the connections for item 2 and 3
as it is not as detailed as the individual section for each repository.

2.4.3 Travis Worker

Workeﬂ is a command line client that runs the Travis CI jobs. It uses VM providers
to execute the script, which the Build module generates on demand (see Figure [2.2).
While the Worker goes through the different stages of execution, he publishes state
and log updates to RabbitMQ. The state updates are handled by Travis Hub and the
streamed logs by Travis Logs.

Internal Structure

Figure|2.8|shows the architecture of Worker. The application maintains a processor
pool. Processors can be added or removed from the pool. On startup a new CLI object
is created by the main function, which then calls Setup and Run. Figure[2.g|illustrates
the order in which messages are send. It also shows, where communication is done
synchronous or asynchronous. This distinction is a crucial aspect of the Worker.

Setup During setup the CLI object creates a configuration from the CLI context,
initializes Sentry and Metrics (Go’s equivalent for Metriks), and creates the job queue,
canceller, logger and build script generator. Additionally it determines the backend
provider according to the configuration, which it sets up immediately. In the end, the
processor pool is created. The job queue is either amgp or file. The former connects
to RabbitMQ as shown in Figure whereas the latter is meant for local execution

BUnlike other Travis repositories it is not following the naming convention
“travis-ci/travis-*”. Since the name “travis-worker” was taken by the old deprecated
repository, the current one is just called “worker”.

14

2.4 Travis Implementation

Processor Pool

Processor 1 Processor 2 Processor n

T . z

Jobs

Figure 2.8: Worker Overview

of the Worker. There are separate implementations of the Job, JobQueue, LogWriter,
and Canceller interface prefixed with amgp or file.

Run Go features a keyword to fork a function from the running process. Asyn-
chronous processes communicate through channels. The CLI uses this behavior to
establish a signal handler. The handler listens for commands to shut the worker
down, print information about all processors and increase or decrease the size of the
processor pool.

The loop in Figure|2.9/shows how the processors are created. A wait group is used
to synchronize all created processors before returning from Run. Incr creates a new
processor and increments the wait group. The processors are run asynchronously
as seen in Figure|2.g|indicated by the pointed arrowhead. Also the keyword defer
is used to decrease the wait group after the processor terminates. This Go feature
allows to delay the execution of a command to after the current method is finished.
Decr, as the opposite to Incr, shuts one processor down.

Job Execution

In idle state each process waits for commands on different channels. There is a job
channel providing the process with incoming jobs. As soon as the process receives
a job, it executes the steps shown in Figure A step is implemented as a class
responding to the Run and Cleanup methods, which receive a StateBag as input to
carry information over to the next step.

Subscribe Cancellation The canceller is basically a map from job IDs to channels.
To subscribe to it means to receive a notification through that channel when the can-

15

2 The Architecture of Travis CI

Setup())
new :PROCESSOR

POOL

Run() \‘

Run()

:PROCESSOR

Run() ﬂ
Figure 2.9: UML Sequence Diagram

Subscribe Generate Send Start Upload Update Open Run
Cancellation Script Received Instance Script State LogWriter Script

Figure 2.10: Steps performed by Worker during Job Execution

celer gets the cancel command from RabbitMQ. The queue is named “worker.com-
mands”. This step creates a channel and subscribes to the canceler with the ID of the
currently processed job. The channel is saved in the StateBag.

Generate Script The second step represents the connection between Worker and
Build as shown in Figure It uses the build script generator to generate the script.
Since the generator was configured earlier during the CLI setup, this step just calls
the Generate method, which sends a HTTP request to the generator URL. Usually
Travis Build then answers the requested script. Finally the script is saved in the
StateBag.

Send Received Send Received is a very simple step. It updates the job state to
received and sets the received_at attribute to the current time. The state update

16

2.4 Travis Implementation

is published to RabbitMQ in case of the amgp job. Listening to the “reporting.jobs.
builds” queue, Hub picks up this event and changes the state in the database.

Start Instance At this point during job execution a virtual machine needs to be
started. The previously configured backend provider receives the signal to start an
instance according to the job’s attributes. In case of an error while starting the VM
the job is requeued. This means that the Worker stops execution and the job can now
be picked up by a new Worker.

Upload Script The build script generated by Travis Build in step 2 is now uploaded
to the VM instance. The StateBag allows access to the script and the instance, so errors
could only occur during the upload and would lead to a requeue of the job, like in
the last step.

Update State Although this step is the shortest one, its cleanup involves setting
the job’s state according to the result of the build script including the finished_at
attribute. On initial execution, this step updates started_at and publishes the
started state change to RabbitMQ), analogous to Send Received.

Open Log Writer Even though it may sound trivial to create a log writer, especially
because it only executes an existing helper function, it is done in a separate step.
The individuality of this stage depends on the fact that opening a log writer could
produce an error. If so, the job needs to be requeued.

Run Script Finally the run script step uses all prepared resources of previous steps
to execute the build script on the VM instance. It asynchronously starts a function
to run the script. All output the script produces is redirected to the log writer. The
log writer periodically flushes its content. This means that it publishes log parts to
the RabbitMQ queue “reporting.jobs.logs”. After running the script the final result
gets directed into the result channel. During execution Go’s select statement is
used to wait on multiple channels (see Listing [2.6). There are four possible events
that can occur while waiting for the build result: it finishes execution indicated by
the result channel, the context cancels the job, the job was canceled by the user or
the log writer timed out. A signal from the result channel could also be an error
during execution. The context cancels, if the maximum time for a job is exceeded.
If a user cancels a job, this message is send to the worker using RabbitMQ. This is
recognized by the canceler mentioned at step one. The log writer times out, if no
output is produced in a large amount of time, hence the corresponding log message

states that ‘this potentially indicates a stalled build or something wrong with the
build itself{]

Yhttps://github.com/travis-ci/worker/blob/master/step_run_script.go#
L92 (visited on 2016-06-14).

17

https://github.com/travis-ci/worker/blob/master/step_run_script.go#L92
https://github.com/travis-ci/worker/blob/master/step_run_script.go#L92

2 The Architecture of Travis CI

Listing 2.6: Relevant Channels waited on during Job Execution

select {

case r := <-resultChan:
[...]

case <-ctx.Done():
[...]

case <-cancelChan:
[...]

case <-logWriter.Timeout():
[...]

}

2.4.4 Travis Hub

Travis Hub is a relatively small service written in Ruby. Its main purpose is to listen to
state updates from multiple Worker instances, which were discussed in Section[2.4.3}
Receive, start, finish, cancel, and restart are the possible events in order of occurrence.
Eventually each of these events leads to a database update of the job or even the
corresponding build. Additionally Hub handles featured addon services and notifies
Travis Tasks to run the corresponding task.

Worker Worker — Worker

A A A
"reporting.jobs.builds.2"

"reporting.jobs.builds.1" "reporting.jobs.builds.<n>"

Dispatcher

»

A

"reporting.jobs.builds"

RabbitMQ

Figure 2.11: Dispatcher

18

2.4 Travis Implementation

Dispatcher

As shown in Figure the Hub consists of a dispatcher and multiple workers, not
to be confused with the Worker in Section Therefore the Hub’s components
will not be capitalized. Also there is a drain component, that just passes incoming
events to a Sidekiq queue called “hu”. Due to its trivial nature Figure does not
include the drain.

The default RabbitMQ queue for job updates is “reporting.jobs.builds”. Ideally the
dispatcher assigns incoming events to the workers using a Round Robin scheduling
algorithm. This implies that events are dispatched in equal portions and in circu-
lar order. As it circles through the workers using the job’s source_id modulo the
amount of workers, the order can get mixed up, though. The code for this looks
as follows: key = job.source_id % count + 1.Computing this number results
in an individual queue for each responsible worker, which is reporting.jobs.
builds.<key>. Thus the first worker subscribes to reporting.jobs.builds.1,
the second to reporting.jobs.builds.2, and so on. The dispatcher publishes the
event to this queue, meaning that Hub uses RabbitMQ for internal communication.

This concept allows the Hub to run in a solo mode. All dispatcher and workers
are replaced by a single solo-worker instance, which listens directly to events on the
main queue, rather than the queues appended with the worker’s number. In fact all
workers used with a dispatcher inherit from solo.

Worker

A worker handles events by creating a handler (see Figure[2.12). This handler either
reroutes the event or handles it. To handle an event means to update the database
with the new state. Also updating a job or a build notifies handler for featured addon
services as shown in Figure All cancel events are published to the “worker.com-
mands” queue, causing the canceler mentioned in Section [2.4.3|to cancel a running
job.

Internally the services updateJob and updateBuild are used, which perform
three steps during their runtime. As seen in Listing [2.7|and the steps are vali-
date, notify and update_job or update_jobs respectively. Furthermore the services use
a distributed locking mechanism based on Redis that acquires an exclusive access
to the job or build being processed. Validate checks if the current event is included
in the list of valid eventsP®| Notify publishes a cancel command to the “worker.com-
mands” queue if the current event is cancel. This is symbolized by the bottom right
arrow to RabbitMQ and is not to be confused with the “notify” arrow which leads
from the update service to each handler (see Figure|[2.12). In fact, the update_job/up-
date_jobs method notifies the handler. Nevertheless this method primarily updates
the database records and possibly adds attributes like started_at or finished_at
associated with the time of the change. The Active Record model is responsible for
managing the states of a job or build. If the last job of a build finishes, the corre-
sponding build needs to be updated as well, so jobs propagate events to their build.

2%receive, start, finish, cancel, and restart.

19

2 The Architecture of Travis CI

Sidekiq
DB
"email" "slack" "pusher-live" T
. P e e r== \\

;. Worker .
1

| R EEEEEE EEEE] EE LR . !
: I Addons : 1

1

1 1 ! :
1 1 !

1 1 Email Slack Pusher 1 :
1 1 Handler Handler Handler [1 1
1 1 ! f
! ! [y 7y 7y) 1
! e - 1
! 1
! notify 1
! 1
! _I 1
! 1
1
' | | updateJob / !
. [reroute] Handler [handle — updateBuild :
! 1
'\ A 1
N [event = cancel] /'

N ~ -~ - ‘
"reporting.jobs.builds.next" "reporting.jobs.builds" "worker.commands"
RabbitMQ

Figure 2.12: Worker

The addon services register themselves for different events and eventually pass a
message to Travis Tasks. Tasks is further discussed in Section [2.4.6]

In this context rerouting means to pass the event to another queue to reduce the
load on the Hub or handle it separately. The queue for rerouting is called “report-
ing.jobs.builds.next” as for AMQP or “hub” for Sidekiq (see Listing |2.9| line 32).
Multiple reasons can cause rerouting mostly configured with environment variables.
The running Heroku Dyno must have rerouting enabled. Additionally Redis is used
to access a key to determine whether rerouting is enabled or not. If these conditions
are met, rerouting can occur by owner or by percent as seen in Listing at line 39.

2.4.5 Travis Logs

Travis Logs is a service that receives the output of the job execution from Worker
(see Section [2.4.3). It assembles the streamed parts into a complete log and archives
it to Amazon S3 after the job is finished.

The Logs service is composed of a separated database and five major components,
performing four steps while processing a job. The database is separated from the

20

2.4 Travis Implementation

Listing 2.7: travis-hub/lib/travis/hub/service/update_job.rb

def run
exclusive do
validate
update_job
notify
end
end

Listing 2.8: travis-hub/lib/travis/hub/service/update_build.rb

def run
exclusive do
validate
update_jobs
notify
end
end

Listing 2.9: travis-hub/lib/travis/hub/support/reroute.rb

QUEUES = { amgp: ’builds.next’, sidekiq: ’hub’ }

def run
reroute || true if reroute?
end

def reroute?
dyno? and enabled? and (by_owner? or by_percent?)
end

def reroute
target = ENV[’REROUTE_TARGET’] || :amqgp # context.redis.get(”#{name}_target”)
queue = QUEUES[target.to_sym]
info ”Routing #{type}:#{event} for id=#{object.id} to #{target}=#{queue}”
publisher = self.class.const_get(camelize(target)).new
publisher.publish(context, queue, [type, event].join(’:’), payload)

end

21

2 The Architecture of Travis CI

Pusher
log parts
. "reporting.jobs.logs"
RabbitMQ ———————> Logs Aggregator
A
log parts :
aggrege;te async
e —— log parts X
delete complete log
Purge 'QS-DB __complete log Aggregate
H b delete log parts
A _/ 9 E

complete logs

e

e Archive R R ECEEEPEEEEPEPE

complete logs

S3

Figure 2.13: Logs Architecture

main Travis database as shown in Figure The steps are receive, aggregate, archive
and purge, displayed clockwise in Figure The Logs component| receives log
parts, the Aggregator assists the Aggregate component and the other components
are named after their step of execution. Aggregator, Archive and Purge represent
multiple Sidekiq background processes, visualized as a stack of items in Figure[2.13]

Logs The Logs component receives streamed log parts from the Worker discussed
in Section It stores log parts in the database and sends out notifications via
Pusher. The component consists of multiple threads subscribing to the “report-
ing.jobs.logs” RabbitMQ queue. The handler for events of that queue is the Pro-
cessLogParts service shown in Listing[2.10] There is one log per job and every log part
is associated with thatlog. A log ID is used, which equals the ID of the corresponding
job. The first received part of each job creates a new log record in the database. There-
fore each part checks if it must create a new log or find an existing one, since it is not

21The Logs component is a part of the Travis Logs service. In contrast to Section
subcomponents are capitalized in this Section.

22

2.4 Travis Implementation

guaranteed that all parts arrive in order of creation. After the corresponding log was
found or created the part is stored in the database. If it is the last part, it is marked as
final indicating to the Aggregator that the job is finished and all parts will be present
in the database soon. Additionally each part saves its part number to ensure that
parts can be sorted. Finally the Logs component notifies other services about the new
log part using Pusher. For example, Travis Web receives this notification to update
the displayed log, while a job is still running (see Figure[2.3). Services can subscribe
to this Pusher channel, which is called [private-]job-<jobID>, using a web APL
This API is a minor component of Travis Logs that uses a Sinatra application to allow
creating webhooks for Pusher or directly editing the content of a log. Furthermore
it keeps track of all subscriptions to this channel using Redis key value pairs that
expire after six hours.

Listing 2.10: travis-logs/lib/travis/logs/services/process_log_part.rb

def run
measure do
find_or_create_log
create_part
notify
end
end

Aggregate In this context aggregation means to concatenate all log parts of a job
into one final log. The Aggregate component performs the aggregation, saves the
result as the log content, and deletes the used log parts. This component permanently
runs in an infinite loop. At first it identifies jobs, whose log parts are ready to be
aggregated. These are either jobs including a log part that is marked as final or jobs
with parts so old that they are forced to be aggregated. Even if a part is marked
as final the aggregation is delayed by a preset time interval to guarantee that all
parts are present in the database. By default the Aggregate component assembles
the logs directly, but if the service is configured to aggregate the logs asynchronously,
it queues this task using a Sidekiq queue. The Sidekiq background processes of the
aggregator subscribe to that queue. Listing [2.11] contains the code that is used by the
Aggregate and the Aggregator components. They concatenate the parts using a SQL
statement, delete all log parts that were concatenated, and queue the log archiving
to the “archive” queue. The deletion of the log is done in the vacuum method.

Archive After aggregation the complete log is present in the database. Although
all included parts were removed during aggregation the content of all assembled
logs adds up to a massive amount of data. To reduce stored data, the Archive com-
ponent saves the logs to Amazon S3 so they can be deleted by the Purge component.
Archive is a collection of Sidekiq background processes just like Aggregator and

23

2 The Architecture of Travis CI

Listing 2.11: travis-logs/lib/travis/logs/services/aggregate_logs.rb

def aggregate_log(log_1id)
transaction do
aggregate(log_id)
vacuum(log_id) unless log_empty?(log_id)
end
queue_archiving(log_1id)
Travis.logger.debug ”action=aggregate log_id=#{log_id} result=successful”
rescue => e
Travis: :Exceptions.handle(e)
end

Purge. Archive responds to events from the “archive” queue and executes the code
shown in Listing

If no log record exists for the given job, archive does nothing. While performing
any successive steps, the log gets marked as being in archiving state. In case the log
exists and is not empty, it can be stored in the Amazon cloud as a plain text file.
Afterwards it is verified that the archived file and the log in the database are of equal
size. This is confirmed in the database by marking the log as archive_verified
and setting the archiving time. Eventually an event to the “purge_log” Sidekiq queue
initiates the deletion of the log from the database.

Listing 2.12: travis-logs/lib/travis/logs/services/archive_log.rb

def run
return unless fetch
mark_as_archiving
return if content_blank?
store
verify
confirm
Travis.logger.debug ”action=archive [...] result=successful”
queue_purge
investigate if investigation_enabled?
ensure
mark_as_archiving(false)
end

Purge The Purge component performs the last processing step for a log, after it
was archived to Amazon S3. A collection of Sidekiq processes remove the content
of archived logs from the database. The meta data is not deleted, though. Different
possible errors during the last steps are covered before purging the log content.
Empty log content or empty S3 files result in error messages that must be handled
manually. Furthermore, if the length of the archived and the database log does not

24

2.5 Evaluation

match, the archiving process is queued again. The actual purging sets the purge time
and removes the log content as seen in Listing[2.13} Meta data such as archiving time
persists in the logs database.

Listing 2.13: travis-logs/lib/travis/logs/helpers/database.rb

def purge(log_id)
@db[:logs].where(id: log_id).update(purged_at: Time.now.utc, content: nil)
end

2.4.6 Travis Tasks

Travis Tasks integrates 3rd party services into Travis. An external service is repre-
sented by a Task that sends out notifications and a Handler to acquire information
and start the Task. Travis Hub runs the Handler when an event occurs the Handler
subscribed to. Since Hub has a database connection, it gathers all data for the Task
to run before notifying Travis Tasks (see Section[2.4.4). A Task is executed without
database connection by Travis Tasks and communicates with an addon service like
mail or slack.

Hub’s responsibility is the delivery of events and not the execution of Tasks. There-
fore each Handler only passes the event to Travis Tasks supplementing information
from the database. A Task is allowed to run longer than the Handler, because it is run
by Tasks and not by Hub. The Pusher Task is an exception, since it is not executed by
Tasks. Travis Live receives and processes events from Sidekiq’s “pusher-live” queue
and executes the Pusher Task.

Figure shows an excerpt of Travis Tasks. The three Tasks correspond to three
Handlers, two of which are shown in Figure Each Task listens for events on an
unique queue. The GitHub Task uses the “github_status” queue and is responsible
for displaying test results in pull request on GitHub. This represents the fourth step
of the Pull Request Build Flow from Figure The Mail Task sends emails and the
Slack Task writes comments in multiple Slack channels. Listing[2.14]shows a method
of the Slack Task, which is executed once per target channel. Additionally this Task
checks the channel for format errors and fills a template message with data, such as
build result and repository slug.

2.5 Evaluation

In this section we evaluate the consequences of Travis” architecture in terms of mod-
ularity, extensibility, and scalability.

25

2 The Architecture of Travis CI

L

GitHub Email Slack amm
Task Task Task
"github_status" "email" "slack'
Sidekiq
Figure 2.14: Tasks

Listing 2.14: travis-tasks/lib/travis/addons/slack/task.rb

def send_message(target, timeout)
url, channel = parse(target)
http.post(url) do |request|
request.options.timeout = timeout
request.body = MultiJson.encode(message(channel))
end
end

26

2.5 Evaluation

Modularity Travis” architectural approach is based on reductionism rather than
holism. Seeing the whole complex system as no more than the sum of its parts ac-
complishes a modular structure, where components can easily be removed or added
[25, p. 312 ff.]. Most modules like Listener or Hub use message broker software or
asynchronous background processes for communication, hence are loosely coupled.
Currently the central database and shared helper repositories are invariant parts of
the system. However, the shared repository travis-core originates from the historical
implementation and is going to be removed.

Extensibility In most cases it is simple to extend Travis, because of its modularity.
A user can add custom scripts to their configuration file that allow for versatile
additional behavior to the test builds. Although the scripts are not as powerful as
Jenkins’ plugins, their use case is completely different. While plugins directly extent
stages of the build pipeline or add custom ones, Travis” user scripts contain custom
commands that are hooked into the pipeline at preset places like before_install,
after_success or before_deploy. In fact one can overwrite the default testing
script, but not manipulate it [46} Section Customizing the Installation Step]. Since
Travis is open source, functionality can be added to the system itself. Most Travis
repositories have a Contributing section explaining how to propose a new feature or
bugfix??| On the one hand, the actual change most often affects only a handful of
modules. For periodic builds, which represent a completely new build flow, just one
module was changed (chapter|[3). On the other hand, this kind of distributed-system
development requires some familiarity with supporting services, libraries, and open
source development. As we worked on implementing the periodic so called Cron
Jobs (chapter [3), we sometimes struggled to understand the existing codebase, due
to the years of experience that were put into the system.

Scalability As mentioned in Section all modules are deployed on Heroku.
Heroku’s process model provides the means to easily scale up and down. Therefore
the capacity of nearly all modules can instantly be increased solely limited by upkeep
cost. The Heroku Website states that ‘scaling your app out horizontally is as simple
as dragging a slider3| Furthermore the Hub module is able to reroute requests to
another Hub module, which lifts additional load from a single Hub. So in terms
of scalability of the existing structures, Travis limits are far from being reached.
Nevertheless, problems arise when trying to scale the system by adding support
for other version control systems or repository hosting services. MagnumCl is an
example of a cloud based CI service that supports the repository hosting services
GitHub, GitLab, and Bitbucket, but to integrate Bitbucket into Travis, enormous ef-
forts would be needed. Currently all members are verified by their GitHub account,
multiple modules gather additional information like commit messages directly from
GitHub, the build script downloads tested repositories from GitHub, the Listener

22https://github.com/travis-ci/travis-api/blob/master/README.md
(visited on 2016-06-15).
23https://www.heroku.com/pricing (visited on 2016-06-15).

27

https://github.com/travis-ci/travis-api/blob/master/README.md
https://www.heroku.com/pricing

2 The Architecture of Travis CI

depends on a predefined GitHub Webhook, and the support for GitHub pull requests
is directly integrated into Travis. Apart from changing nearly all modules to support
multiple repository hosting services, the database would need to distinguish between
GitHub content and content from other sources.

2.6 Future Work and Conclusion

In this chapter, we gave an overview of Travis’ architecture and functionality. Since
Travis is open source, the community frequently requests new features and improve-
ments. Travis decides whether they are worth the effort. There currently are multiple
features in progress.

Tackling the problem of software that runs out of date or becomes incompatible
with their dependencies without a change in the software itself, an alternative build
flow to the process illustrated in Figure [2.1]is required. Builds could be triggered
periodically (chapter [3) or on every change of the dependencies (chapter [4). The
former just needs changes to Travis API, while the latter depends on substantial
adjustments to multiple modules and possibly a completely new module. What all
solutions for that problem — beyond the two mentioned — have in common, is that
they modify the existing build pipeline by adding new starting points aside from
pushing changes to GitHub.

Moreover, the way in which results are presented to the customer can be improved.
Whereas the present approach shows individual build results, it is difficult for the
user to gather information that depends on multiple data sets. Therefore a central
access to combined test results, where information is presented in a visual and intui-
tive way, would highly increase the benefit of using a continuous integration service
in the first place (chapter [5).

The extent of modularity is based on the change from a single repository in 2011
to many microservices [35]. Looking at the enormous architectural changes during
that time period, Travis” goal of modifying the system towards modularity, extensi-
bility, and scalability remains. In the future, this process continues with the planned
removal of travis-core.

In conclusion, Travis provides a structure that can easily grow and be extended,
not only by their own employees but also by the open source community. Especially
the users can customize their experience with Travis, using configuration files, own
build scripts, and the settings on the web page.

28

3 Interfaces for Expressing Periodic Task
Schedules

Periodic task schedules are required when performing tasks reqularly. Currently, Crontabs
are the predominant mean of expressing periodic task schedules in IT systems. Expressing
periodic schedules with Crontabs is difficult, overly specific, and tainted with expressiveness
issues. We propose and evaluate different approaches of expressing periodic task schedules,
trying to avoid the issues of Crontabs. Our implementation realizes point-vector periodicity,
the most suitable solution we found. This work provides an overview about properties of
different periodic schedules and aims for helping the reader choose the most appropriate
solution for their use case.

3.1 Introduction

When performing tasks on a regular basis, periodic task schedules are required to
express when a task has to be executed. In IT systems, the Cron job scheduler is the
most common solution for recurringly performing tasks. The Cron daemon uses
Crontabs as interface for expressing periodic schedules, stating when a task has to
be executed.

The problem with Crontabs is, that they only provide one, fixed scheme for ex-
pressing periodic schedules. This scheme is hard to understand, provides only one
degree of precision, and has expressiveness issues.

In this chapter we focus on problems connected with Crontabs in the context of
continuous integration systems [5, Continuous Integration, p. 49-50] and examine
different approaches for expressing periodic task schedules. We evaluate the ap-
proaches in terms of understandability, precision, and expressiveness and propose
a terminology. Our implementation of the most intelligible solution we found takes
place in context of the continuous integration service Travis CI and enables periodic
testing of software projects.

3.2 Context
Initially, building, testing, and integrating was done whenever the developers had

time to do so or thought it to be reasonable. There was no continuity or periodic
schedule for performing these steps. To avoid large change sets that might be hard

29

3 Interfaces for Expressing Periodic Task Schedules

to integrate or could break large parts of the systems at once]]| continuous integra-
tion was introduced. At first, continuous integration was done only time-based. This
was due to limited resources. Building, testing, and integrating took a vast amount
of time which forced the developers to perform this step at night, when there was
no one working on the system (known as “nightly builds”). As computing power
improved, continuous integration could be performed more often. In combination
with version control systems, building, testing, and integrating can be done subse-
quently to every commit. This kind of event-driven continuous integration is used
by Travis CI. Unfortunately, there may be external dependencies or resources that
are out of the version control systems scope, like databases, media files, or other
software that is used by the project but that is not under accessible version control.
These external resources may change without the version control system noticing.
While this is not a problem for actively developed projects because these projects
are frequently changed and therefore built and tested, it tends to be problematic for
idling projects. Building periodically (time-driven) in addition to building after each
commit (event-driven) is a generic way of coping with this kind of problem. Depend-
ing on how often external resources change, the interval of periodic building can be
chosen larger or smaller. This leads us to the problem of how to express intervals
and periodicity.

In computer science, Crontabs (cron tables) are a common way of expressing sched-
ules for periodic tasks. Crontabs are used with the Cron daemon, a time-based task
scheduler that usually runs on Unix-like systems. The standard [44] way of specify-
ing recurring events in a crontab entry is to set values for the fields “minute”, “hour”,
“day of month”, “month”, and “day of week” whereas the values can either be a do
not care symbol (), an element, or a list of elements (comma separated). An element
can either be a number (see below) or two numbers separated by a hyphen (—) which
specifies an inclusive range. Permitted numbers for elements are the following:

minute o to 59 (the minutes of an hour)
hour o to 23 (the hours of a day)

day of month 1 to 31 (the days of a month)
month 1 to 12 (the months of a year)

day of week o to 6 (the days of a week as numbers starting at (0 =) Sunday)

The task associated with the crontab entry runs whenever the current time matches
the entry’s pattern which is the case when the time part (“minute” and “hour”) and
the date part (“day of month”, “month”, and “day of week”) are matched by the
current time. The time part is matched whenever the current minute matches the
“minute” field of the pattern and the current hour matches the “hour” field of the
pattern. To find out if the date part is matched we have to distinguish 4 cases:

"Defects in the code can only be noticed, if there are exhaustive tests. At least one point in
the infection chain of the defect has to be covered by a test to avoid missing the defect.
Otherwise the user will observe a failure which has to be avoided.

30

3.3 Problem

day of month
hour month
minute — ’ ‘ — day of week

0 011* command
time part — 71 T week part

date part —_I_

Figure 3.1: Naming of structural parts of a crontab entry in this paper

1. The fields “day of month”, “month”, and “day of week” are all unspecified
(filled with the do not care symbol, *). In this case all days are matching the
pattern.

2. The field “day of month” and/or the field “month” are specified but “day of
week” is not. In this case a day matches the pattern if and only if it matches
both the “day of month” and the “month” field.

3. Both “day of month” and “month” are unspecified but “day of week” is. In
this case a day matches the pattern if and only if it matches the “day of week”
field.

4. The field “day of month” and/or the field “month” are specified and “day of
week” is also. In this case a day matches the pattern if it matches the “day of
month” and the “month” field and/or if it matches the “day of week” field.

A value matches a pattern field, if the field’s content is either a do not care symbol
(¥), an element that is matched by the value, or a list of elements that contains one
element that is matched by the value. An element is matched by a value if either
the element is a number and the number is equal to the value, or the element is an
inclusive range which includes the value [44].

3.3 Problem

Despite the fact that Crontabs are a popular way of expressing periodic time sched-
ules in terms of computer science, they also have crucial disadvantages.

Understandability First of all the format of Crontabs is hard to map on natural
language and hence not intuitive. Since Crontabs are basically a succession of num-
bers followed by a command, the user has to know what each number means. The
fact that Crontabs are not self-explanatory is primarily a difficulty for new users.
But even if the user is acquainted with the meaning of each field there are still
difficulties in translating the Crontabs time format to natural language. A crontab

31

3 Interfaces for Expressing Periodic Task Schedules

”0 0 1 1 * command” isread as “when the minute is zero, the hour is zero, the day
of month is one, and the month is one”. Firstly it is unclear, why “minute”, “hour”,
and “day of week” start at zero while “day of month” and “month” start at one, and
secondly this is a very complicated way of expressing “yearly” which leads to the
second disadvantage of Crontabs.

Overspecification Whenever something has to happen once in a period of time, all
smaller units of time must be specified as well. As shown in the example above, when
a command has to be executed once a year, the month, the day of month, the hour,
and the minute have to be set too. There are implementations like “Vixie Cron” by
Paul Vixie [48, 49] that try to cope with the problem of overspecification by adding
keywords that can be used instead of the five fields used in the standard implementa-
tion. “Once a year” can then be expressed as ”@yearly command” which translates
to”0 © 1 1 * command” [49]. The problem with this notation is that it only affects
the way the user deals with Crontabs, not the way crontab entries are processed by
the computer. While the user only specifies that something has to happen yearly
while being unspecific about when exactly it has to happen, the computer interprets
”@yearly” as “exactly at the beginning of the year”. While this is inconsiderable for
one cron job many cron jobs with this kind of specification will cause bursts at the
beginning of common time intervals (e.g. years or months).

Expressiveness In our opinion the main disadvantage of Crontabs is that the ex-
pressiveness is not suitable for some common scenarios. One problem is that ex-
pressing fixed intervals of more than one unit is hard or even impossible. While it is
easy to state that something should happen once in a time interval corresponding to
a field of a crontab entry (i.e. once a minute, hour, day, week, or month) it is hard to
express that something should happen once in a time interval that is a multiple of an
interval corresponding to a crontab field. For example, expressing “execute command
once a day” is easily expressed by 70 @ * * x command” buta minor modification
like “execute command once in two days” is difficult to express.

Another problem is that at least the standard implementation of Crontabs is limited
to the five fields “minute”, “hour”, “day of month”, “month”, and “day of week”.
Holidays, phases of the moon, the weather, and other interesting measures like how
often a day of the week appears this month are not taken into account. A use case of
these measures is the opening hours of some public authorities which are on duty
for example every fifth Wednesday a month. If there are only four Wednesdays a
month there has to be an alternative opening time like the fourth Wednesday or first
Wednesday of the next month.

Also, definitions of dates that are defined relatively to other dates (like Easter) are
not to be expressed with crontab entries. For example, the date of Easter is defined as
the first Sunday after the first full moon in spring. Despite the fact that moon phases
are not supported in cron tabs, it is also not possible to state something to be the n-th

32

3.4 Approach

occurrence of x before or after y. Depending on the domain this may or may not be
a problem.

To discover more time specifications that are not to be expressed with Crontabs
we have to take a closer look on how the fields of a cron tab entry are connected. As
described above there is a part for time specification and a part for date specification
in a crontab entry. The fields of the time part (“minute” and “hour”) are simply con-
nected by a logical conjunction which means that the current “minute” has to match
the “minute” field of the pattern and the current “hour” has to match the “hour” field
of the pattern. The connection between the fields of the date part (“day of month”,
“month”, and “day of week”) is more complex. While “day of month” and “month”
are also connected by a logical conjunction the connection between these two fields
and “day of week” is a logical disjunction as long as both “day of week” and at least
one of “day of month” and “month” are specified. If the week part or the month part
is unspecified () then it is a conjunctive relationship. Expressed in natural language
this means that “day of month” and “month” have to match the pattern or “day of
week” has to match the pattern if both parts are specified?| If only the month part
(“day of month” and/or “month”) is specified and the week part (“day of week”) is
* only the month part has to match and vice versa: if only the week part is specified
only the week part has to match. The logical disjunction deprives us of the possibility
to express that something has to happen if and only if all three fields are matched.
Expressing “every Sunday in June” or “if the first day of the month is a Monday” is
impossible due to the use of a logical disjunction instead of a conjunction. It may seem
that it comes in handy to be able to specify patterns like “every Monday and also
every first day of the month” (”0 @ 1 * 1 command”) with one crontab entry but
while this can also be expressed with two Crontabs entries ("0 © 1 * * command”
and "0 0 * * 1 command”) a conjunctive relationship between “day of month”,
“month”, and “day of week” can not be expressed, neither with one nor with many
crontab entries. This is because crontab entries are disjunctively connected among
each other. A command is executed if one crontab entry is matched by the current
time, not all crontab entries that contain this command have to be matched.

3.4 Approach

We found two common approaches for expressing periodic task schedules. The first
is “point-vector periodicity”. Using this approach, periodic schedules are specified
with a starting point in time and a duration. A given point in time belongs to the
periodic set if it is reachable by adding a multiple of the duration to the starting point.
This approach perfectly matches terms like “starting now every two days” which is a

>The disjunctive relationship is between week part and month part may be for convenience
reasons for experienced users, assuming that these disjunctions (e.g. “every Monday and
every first day of the month”) are a common use case, while conjunctions (e.g. “if the
first of the month is a Monday”) are highly improbable and can hence be ignored.

33

3 Interfaces for Expressing Periodic Task Schedules

common way of expressing periodicity in natural language. The second approach is
“conditional periodicity”. Crontabs are, among others, part of the second category.
When using this approach, recurring points in time are specified by conditionals. A
point in time belongs to the set of recurring events if and only if the conditionals can
be evaluated to true. In the following we will describe how these two main concepts
can be used.

3.4.1 Point-Vector Periodicity

v
1
w

’
-

Figure 3.2: Linear function defined by a point (position vector) p and a vector §

Definition In math, linear function can be defined by a starting point and a vector
using the following formula, whereas p is the position vector of an arbitrary point
on the graph of the linear function, 7 is the position vector of the starting point and
7 is the direction vector:

pP=q4+s-7 pgreR" seR

Or, as a concrete example for two-dimensional linear functions (Figure|3.2):

— +s- X7 rYxs /rXIrISGR
(Py q, ry Pxs Py, 9x, 9y y

34

3.4 Approach

We propose a similar approach for specifying periodic time schedules, were a peri-
odic set of points p in time is declared by a starting point in time § and a duration 7.

p=q+s-7 se€Z

Please notice that s is an integer in the latter formula, because if s would be a real
number every point p in time would match. Since time is scalar quantity, this for-
mula can also be considered an arithmetic progression, which leads to the following
formula:

ti=tg+i-At ie€eZ

For encoding the starting point ¢y in time and the duration At we can either use
numbers representing units of time, e.g. seconds or milliseconds, since a fixed point
in time (like Unix timestamps) or we could use any other date and time format as long
as arithmetic operations (at least addition) are defined on it. Consider this example
using RFC3339 [30] notation:

t; =2016-05-11T11:08:12+02:00 4 i - 0000-00-03T12:00:00Z

This defines a set of periodic events starting at 11 May 2016 11:08:12 in UTC+2 (Central
European Summer Time) and recurs every 3 days 12 hours. The example shows that
using point-vector periodicity is intuitive since it is easy to map on natural language.
This may be the reason why this kind of specification (or variations therefrom) is
often used in end-user calendar software (Figure [3.3).

Repeat

One-time event

Repeat Repeat
Daily O P P
Every 1 day Every 1 vyear
Weekly O - -
Monthly O
Yearly O
CANCEL CANCEL DONE CANCEL DONE

(a) Selecting unit for inter- (b) Selecting the numerical (c) Selecting the numerical
val At value for At when unitis value for At when unit is
Ildaysll Ilyearsll

Figure 3.3: Creating recurring events with Samsung’s SPlanner

35

3 Interfaces for Expressing Periodic Task Schedules

Simplification Complexity reduction can be achieved by only allowing specific
values for the duration At. Calendar software usually offers to set durations that are
multiples of common units like day, weeks, or months, as shown in Figure This
makes sense e.g. for meetings that take place every second week whereas in context
of continuous integration it is only of minor importance whether a project is tested
every week or only every two weeks. Therefore the domain of At can be condensed
to a choice of magnitude, e.g. by only allowing the values “one day”, “one week”,
and “one month”.

Another mean of reducing complexity for the user is to avoid setting the starting
point tp manuallyP| because when dealing with external dependencies it is more
relevant how often a project is rebuild and not when exactly. With respect to this the
current time (“now”) can be taken as default value. Furthermore, the domain of i
can be reduced. For example by limiting i’s domain to the set of natural numbers
(INg) we can be sure that tg is the first event in the set. All times before tg are not to be
taken into account. This makes it easier for the users to consider ¢ to be the starting
point of the series of events.

Limitations When using point-vector periodicity only fixed intervals can be ex-
pressed due to the fact that At is fixed (Figure [3.4). This leads to equally sized inter-
vals (of size At) which is on the one hand often the desired behavior but on the other
hand this makes it impossible to express periodic sets with varyingly sized intervals.

Comparison with Crontabs As mentioned above, point-vector periodicity is easy
to map on natural language and therefore, in contrast to Crontabs, easily understand-
able. A problem concerning understandability that occurs when using point-vector
periodicity with arbitrary duration (At) for longer time is that it gets harder to find
out if a given point in time t; is part of the periodic set due to the fact that i has
to grow with time. To cope with this problem, the domain of At can be reduced
to values that allow calculations of ¢; by only manipulating specific parts of t. For
example, “1 day” as value for At allows optimization by only comparing every field
with lower dimension than the day field (i.e. hours, minutes, seconds, and possibly
milliseconds) of ¢y with t,,. If the fields match we can be certain that ¢, is part of the set
defined by t and At. Unfortunately this approach limits the expressiveness crucially.
An alternative approach is using a recursive definition of the arithmetic progression
rather than the explicit form. This changes the formulas in use as follows:

ti=to+i-At, ic€Z (explicit formula)

becomes
tirg =ti+At, i€ Z (recursive formula)

3Selecting points in time is a complicated job because date and time specification requires
many components that have to be taken into account.

36

3.4 Approach

Figure 3.4: Expansion of point-vector periodicity (using the explicit formula) by
adding iAt for varying i € Z and fixed At

+A; +A, +A; +A
Y Y Y £ y £
2\/ 1\/O\A/\A/Z\A/ i

"By

Figure 3.5: Expansion of point-vector periodicity (using the recursive formula) by
adding or subtracting At to or from a given t;

When using the recursive formula, we need to store t; and update it every time,
due to the fact that every t; is only to be calculated if ¢; is known, as shown in
Figure

The problem of overspecification is not inherently solved by point-vector period-
icity. The degree of specification depends on how precise the date and time format
in use is. Most programming languages implement date and time formats with pre-
cision up to milliseconds which leads to enormous overspecification. Concerning
expressiveness, point-vector periodicity is only able to avoid one of the disadvan-
tages describes in section 3.3} while even creating some new. Point-vector periodicity
allows creating equally sized intervals of multiples of common time units, e.g. 2
days.

3.4.2 Conditional Periodicity

Definition Conditional periodicity provides logical expressions rather than arith-
metic formulas to express periodic schedules. A given point in time is part of the set
defined by a logical expression if and only if the logical expression can be evaluated
to true for the given point in time. Logical expressions are created by linking predi-
cates using logical operations. While logical operators, like conjunction, disjunction,
and negation, are well known and universally usable, it is unclear how to express
predicates in terms of points in time and periodic expressions. We need to access
specific properties of a point in time to use in predicates. For example, a predicate ex-
pressing that a given point in time t has to be in July can be expressed in a functional

37

3 Interfaces for Expressing Periodic Task Schedules

way by:
month(t) =7
Also, we could use an object oriented-notation, like Python’s datetime module [15],

and write:
t.month ==

In this chapter we will use the functional notation because it abstracts from the actual
implementation. When using a function for accessing properties of a point in time £,
t can be anything, even an integer representing seconds since a fixed point in time.
By using the object-oriented notation we are accessing a property of an object while
not knowing if the property exists{|

Now that predicates and junctions between them are know, the way of expressing
a set of periodic events has to be considered. While there are other notations in use,
we make use of the mathematical way of denoting sets:

S={t]|month(t) =7}

This set contains every point in time that is in July, regardless of its year, day, hour,
minute, second or any other measure. Expressing multiple conditions can be done
as follows:

S={t| (month(t) =7V month(t) =1) Nday(t) =1}

Expressing Crontabs The notation defined above can be used to specify an isomor-
phism for Crontabs. This shows, that Crontabs are just an instance of conditional
periodicity. Using the set notation, a crontabf]

<m> <H> <d> <M> <E> <command>
can be expressed as

= { t| minute(t) = <m>
A hour(t) = <H>
A ((month(t) = <M> Aday(t) = <d>) V weekday(t) = <E>) }

4Assuming t.month is an attribute and not a getter method.
5In compliance with the Unicode Locale Data Markup Language [17], the following symbols
are used:

<m> for minutes with minute as corresponding function name

<H> for hours (24-hours format) with hour as corresponding function name
<d> for days of the month with day as corresponding function name

<M> for months with month as corresponding function name

<E> for days of the week with weekday as corresponding function name

38

3.4 Approach

While this works fine if the fields only contain single values, other forms of predicates
have to be used if the fields contain lists of values or ranges. The normal form for
single value fields is:

attribute(t) = value

Lists of values can be expressed with:
attribute(t) € {valuey, valuey, ..., value,}
Ranges of values can be expressed with:
attribute(t) € [form, to]

An asterix, the do not care symbol in terms of Crontabs, is expressed by simply
omitting the condition for this attribute. With respect to these replacement rules,
the set expressing the crontab entry can be rephrased using only set notation for the
attribute conditions while avoiding conditions of the form attribute(t) = value.

S = { t| minute(t) € <m>
A hour(t) € <H>
A ((month(t) € <M> Aday(t) € <d>) V weekday(t) € <E>) }

In this set definition, <m>, <H>, <d>, <M>, and <E> always have to be sets. If the
corresponding crontab fields contains a single value, the set representing the field
also contains only a single value. For lists of values, every value in the list is in the
set. Using ranges, the set is defined by an equivalent range. Do not care symbols are
still represented by omitting the condition. By applying these rules we can translate
crontab entries to the more generic form of conditional periodicity introduced in
this section.

Improving Crontabs Now that we are able to express crontab entries in a generic
way, we can make improvements and try to solve the identified issues. A simple
but effective advance that solves some of the expressiveness issues is replacing the
logical disjunction by a conjunction. This leads to the following set definition:

S = { t | minute(t) € <m>
A hour(t) € <H>
A month(t) € <M>
Nday(t) € <d>
N weekday(t) € <E> }

With this improvement, it is possible to express combinations between weekday and
day of the month by specifying predicates for both. Expressing patterns like “if the
first day of the month is a Monday” was not possible with Crontabs due to the fact
that specifying both weekday and day of the month would mean “whenever at least
one of the two predicates are matched” or more concrete: “every first day of the

39

3 Interfaces for Expressing Periodic Task Schedules

month and every Monday”. The improvement allows expressing “if the first day of
the month is a Monday” appropriately. Moreover, this does not deprive us of the
possibility to express “every first day of the month and every Monday”. We just have
to specify two sets of the predefined form.

Another problem solved is correlation between weekdays and months. In sec-
tion [3.3| we figured out that events that have to take place on specific weekdays in
specific months are not to be expressed with crontab entries due to the disjunctive
connection between week part and month part. With the conjunctive connection in
our improvement, this is possible.

While the advance made above only makes use of the fields used by Crontabs,
other information can be included as well, as long as they can be represented by
a function. The functions used do not necessarily have to return a numeric value.
For example, holidays could be queried by a function isHoliday(t) which returns a
boolean value.

Limitations While the proposed general form of conditional periodicity is able to
solve most of the expressiveness problems Crontabs have, there are some problems
that remain unsolved using this approach. Firstly, it is still unclear how to express
equi-sized intervals of arbitrary length like in point-vector periodicity. This issue
will be addressed in the next paragraph when dealing with hybrid forms of condi-
tional and point-vector periodicity. Secondly, understandability is only given when
assuming the user to have knowledge of formal logic. Conditional periodicity in
general, as well as Crontabs in particular, does not map well on natural language.
While conditional periodicity can be a powerful tool in terms of computer science
and mathematics, it is not suitable for end-user applications due to the fact that it
requires knowledge about formal logic. Thirdly, the level of detail is determined
by the domain of t in a set S = {t|... }. If t represents time with a precision up
to milliseconds, the specification has to be accordingly specific. For crontab entries,
we assume that the granularity of t is not smaller than minutes. Unfortunately, the
overspecification problem is not influenced by the improvements made. If specifying
periodicity with a coarse granularity (e.g. “every day”), every smaller entity of time
has to specified as well (e.g. “every day at 18:00:00.000”). A solution is proposed in
sectionwhere we introduce vague events.

3.4.3 Hybrid Forms

Since the inability of expressing equi-sized intervals of arbitrary length is the only
weakness in terms of expressiveness conditional periodicity has and point-vector
periodicity solves exactly this problem, it seems natural to combine these two forms
of expressing periodicity. We propose using the arithmetic progression that specifies
point-vector periodicity as an additional predicate for the conditional periodicity that

40

3.4 Approach

is connected to the other predicates by a conjunction. Thus, point-vector periodicity
is built-in into conditional periodicityﬁ

S={t|t=t+i-AtNi€ZN...}

For reasons of clarity and comprehensibility, conditional periodicity and point-vector
periodicity can be defined as two different sets. These sets are then joined together
by an intersection.

Seoma = { t] ...}
S:Spvmscond

This procedure is equivalent to the one described above because the intersection
between set A (S4) and set B (Sg) is by definition a set that contains a value if and
only if the very value is contained in both sets —in S 4 and in Sg. Therefore:

S=5,NSp
— S={x]|<conditions of Sy>}N{x|<conditions of Sp>}
— S={x]|<conditions of Sg>A<conditions of Sg>}

3.4.4 Time Range Limitation

By now, sets of periodic events are reaching infinitely into the past and the future.
In the context of point-vector periodicity we tried to limit at least one direction of
infinity by specifying the domain of i to be Ny rather than Z. While this avoids ¢; to
be less than ¢y, t; can still get infinitely big. In terms of conditional periodicity, more
advanced limitations in time range can be done. Ordering relational operators, like <,
<, >,and >, enable precise delimitation of t's range. Predicates using these operators
for constraining the range of t are simply connected with the other predicates in use
via a conjunction.

An example using RFC3999 for denoting time:

S={t|t>2016-05-11T11:00:00+02:00
At <2016-06-11T11:00:00+02:00
Ao}

3.4.5 Vague Events

Another issue with Crontabs we have shown in section (3.3 was overspecification.
The version of Crontabs we refer to is always specific to the minute. For use cases

®The three dots in the equation (. ..) are a placeholder for the predicates of the conditional
periodicity.

41

3 Interfaces for Expressing Periodic Task Schedules

where there is no need for such a high precision we present three approaches to
address this problem:

1. coarse domain
2. allowed deviation
3. time frames

These solutions offer periodic time schedules that are widely defined and leave
therefore room for other concerns, like load balancing or priority scheduling.

Coarse Domain Vague events can be achieved by defining the points in time ¢ that
are part of the periodic set S with a domain D that is appropriately coarse-grained.
If a deviation of maximum an hour around t is acceptable, the granularity of D
can be limited to hours as smallest unit of measurement. Minutes, Seconds, and
every smaller unit do not have to be taken into account. With this approach either a
component based format (storing years, months, days, etc. separately) can be used
and clamped after (for our example) the hour component, or a format that counts
time units since a fixed point in time (e.g. begin of 1970) can be used whereas the
time unit counted has to be hours for the example. Figure[3.6|illustrates the example.

t
v

6 o'clock 7 o'clock 8 o'clock 90'clock 10 0'clock

Figure 3.6: Timeline showing the coarse domain approach with a granularity of one
hour. Every red or blue bar represents one hour and bars can only be selected as a
whole.

Allowed Deviation Another way of expressing a vague periodic schedule is speci-
tying the allowed deviation explicitly. Consider the following periodic set described
by conditional periodicity with the domain D limited to minutes as smallest consid-
ered unitl;

S={t]|te€ DAhour(t) mod 6 =0Aminute(t) =0}

7The set contains points in time for every day at 0:00, 6:00, 12:00, and 18:00.

42

3.4 Approach

| l
I I
t-20min t+10min
t
Figure 3.7: Timeline showing an allowed deviation around t of 20 minutes in the
past and 10 minutes in the future. This leads to a time frame of 30 minutes where
the task can be executed.

\/

When there is an allowed deviation of 15 minutes in both directions, the set can be
rewritten as follows:

S={T]|te& DAhour(t) mod 6 =0 A minute(t) =0
/\T:{td]tdED/\tdZt—lSminAtd§t+15min}}

Instead of using t directly, another time variable t,, that is arbitrarily chosen between
t — 15 min and ¢ 4 15 min, is (widely) defined. All ¢;’s for a fixed t are contained
in a set T. When e.g. a scheduling algorithm actually decides when the task corre-
sponding to t has to be executed, the algorithm chooses one element f; from the set
T for the corresponding recurring point in time ¢. Using this notation, even different
allowed deviations for future and past can be achieved (Figure. This is useful, for
example when a task can be executed way earlier than planned but not significantly
later.

Time Frames Instead of specifying one set of conditions for the elements of a
periodic set, two sets of conditions are defined. These two sets create time frames in
which the actual point in time for the execution of the task is located. Therefore one
set specifies the beginning of the time frame and the other one the end:

S={T |ty € DAhour(ty) = 11 A minute(ty) = 45
At € D Ahour(ty) = 12 A minute(t;) = 15
A day(ty) = day(t1) N month(ty) = month(ty) A year(to) = year(ty)
AT ={t|t>toAt<H}}

In this example t(defines the beginning of the time frame and t; the end (Figure
3-8). The periodic set describes something to happen every day between 11:45 and
12:15. As in the previous paragraph, a scheduling algorithm or something similar
has to choose the actual time of execution from the set T. Please note the additional
conditions day(ty) = day(t;) A month(ty) = month(t1) A year(ty) = year(t;). Using
this approach, it is important to specify the larger units to be equal (or in some cases
successor and predecessor) for ensuring that begin and end of a time frame are not
offset by multiples of these larger entities. Another way of expressing vague periodic
events using time frames is specifying to by conditions and specifying t; relative to
to or vice versa:

43

3 Interfaces for Expressing Periodic Task Schedules

S={T]|tyt1 € DAhour(ty) =11 A minute(ty) = 45
A t1 = tg + 30 min
AT={t|t>tgAt<H}}

For the examples we assumed that the smallest unit of time of the domain D is
minutes. Therefore the smallest specified unit for ¢y and #; is minutes.

to t1

Y

Figure 3.8: Two points in time ¢y and ¢; are creating a frame on the timeline in which
the actual point in time ¢ is located.

3.5 Implementation

Interface We decided to use a simplified version of point-vector periodicity. Our
implementation makes use of the formula given in section 3.4}

ti=to+1-At

To limit the degrees of freedom, we made some restrictions on At, ty and ;.

VA7 7

At The specification of At is limited to the keywords “daily”, “weekly”, and “monthly”.
Whereas “daily” defines At to be one day, “weekly” defines At to be seven
days, and “monthly” sets At to one month, regardless of how many days the
corresponding month has. The value of one month for At breaks with the as-
sumption that the intervals of point-vector periodicity are always equi-sized.
This is caused by the nature of our means of measuring time.

Limiting the domain of At to this set of keywords is unproblematic, because
most external dependencies do not change more often than once a day.

to For reasons of simplicity, ¢y is not specified by the user but set to the current date
and time instead. This is also a way of achieving load balancing. Due to the
fact that it is nontrivial for the user to influence the time the event occurs, the
events are circadian.

t; The value of t; is always rounded up to a full hour. This is because the scheduler
that starts the jobs only runs once an hour.

44

3.5 Implementation

Cron Jobs

master monthly June 24, 2016 13:00:00 Only if no new commit after last cren build

master v monthly v Only if no new commit after last cron build

Figure 3.9: User Interface for creating a set of periodic events

We chose this implementation because Travis CI aims for being simple as well
as quickly set up. To many options would result in a slow and complicated set up
process. The current user interface (Figure needs one to six clicks to set up a
cron job. Also, by limiting At to one day as smallest possible interval, we avoid high
loads on the Travis CI infrastructure.

Using the API, a cron job can be created by sending an HTTP POST request to the
/v3/repo/{repo.id}/branch/branch.name/cron endpoint. The payload has to
consist of two key-value pairs: The first one is called disable_by_build and has
no effect on the periodicity in terms of interval size or starting time. The disable_-
by_build key (represented with an on/off switch in the UI) makes Travis CI skip a
cron build if there was another build (e.g. triggered by pushing to the version control
system) during the last interva The second key is called interval and accepts one
of the values daily, weekly, and monthly. While At is specified via the interval
key in the API, t; is always the time when the request reaches the server. Hence there
is no key-value pair for this piece of information. Information about repository and
branch for which the cron job has to be created are part of the URL.

Data Model The Data Model directly mirrors the interfaces. As shown in Figure
there is one database table for cron jobs that contains, besides some meta data
the following relevant attributes:

branch A reference to the branch table pointing to the entry representing the branch
that has to be build by the cron job.

interval Stores the interval At using the keywords daily, weekly, and monthly.
This field cannot be empty and all other values are rejected by an upstream
logic (i.e. the Ruby service that issues the database queries).

created_at A timestamp that represents the time when the cron job was created.
This piece of information is used as ty in our model of periodicity.

disable_by_build A boolean value causing conditional skipping of a cron build if
set to true.

8If the boolean value disable_by_build is set to true, the build triggered by the corre-
sponding cron job is omitted if there was another build between the point in time the
cron job has to run next and the last crn triggered build on this branch.

45

3 Interfaces for Expressing Periodic Task Schedules

Cron

+ interval: string

Branch + created_at: timestamp

+ disable_by_build: boolean

Figure 3.10: Data Model of Cron Jobs

Logic There is a service for starting all cron jobs that is triggered by a service
(running on a Heroku dyno) once an hour. This service queues?|a cron build if the
cron jobs next enqueueing time is now or already in the past (Listing|3.1).

Listing 3.1: Starting all due cron jobs

def start_all()
Models::Cron.all.select do |cron|
start(cron) if cron.next_enqueuing <= Time.now
end
end

Listing shows how cron.next_enqueueing is computed. There are three
points in time that have to be taken into account (Figure|3.11):

LastBuild From the current point in time going back in time to the first point that
matches.

ThisBuild The current time if it matches the pattern. Else: From the current point
in time going forward until the next matching point in time.

NextBuild The next matching point in time after ThisBuild.

Also, we have to distinguish three different cases. Firstly, if the disable_by_-
build flag is set, we have to check if there was another (non-cron) build after the
last point in time where the cron job had to run (LastBuild, lines 2—3). In this case,
this cron build (ThisBuild) is skipped and the next enqueueing is one interval later
(NextBuild).

9The terminology uses “queueing” instead of starting, because the build is only appended
to the build queue. This does not ensure that the build starts at the time of enqueueing.
If there is currently high load on the infrastructure, it may take some time until the build
starts.

46

3.5 Implementation

+Ak +Akt
:/:\‘ :/\ | >
LastBuild Now ThisBuild NextBuild

Figure 3.11: Relative position in time of build keywords

The else branch (if the condition stated above does not apply) is further divided
into two cases. If there was a cron build in the last interval (between LastBuild and
now), the next enqueueing is for ThisBuild (lines 4-5). If there was no cron build
in the last interval, the cron job is overdue and has to be enqueued immediately
(lines 6-7).

Listing 3.2: Choosing the correct element of a periodic set

def next_enqueuing
if disable_by_build && last_non_cron_build_date > planned_time(LastBuild)
planned_time (NextBuild)
elsif last_cron_build_date >= planned_time(LastBuild)
planned_time(ThisBuild)
else
Time.now
end
end

By now, the logic for selecting the appropriate element of the periodic set is clear.
A topic yet to be discussed is, how the considered elements of the periodic sets are
generated. To achieve the generation of DateTime objects out of the keywords Last-
Build, ThisBuild and NextBuild, we need to distinguish between “daily”, “weekly”,
and “monthly” intervals. This is because the implementation generates DateTime
objects not by using the formula t; = ty + i - At but by assembling it from its compo-
nents (e.g. year, month, day, hour, ...), as already described in section Therefore,
the only thing planned_time does is selecting a method depending on the value of
interval (Listing[3.3).

The methods planned_time_daily, planned_time_weekly, and planned_-
time_monthly assemble DateTime objects for ThisBuild. Afterwards the DateTime
object is offset by one day, week, or month to future or past. Since the keywords
LastBuild, ThisBuilds, and NextBuild are internally represented as integer constants
with values —1, 0, and +1 (Listing , they can be used as factors for the offset.

For the assembly of the ThisBuild DateTime object two DateTime objects, Date-
Time.nowand created_at, are used. For a “daily” interval the year, month, and day

47

3 Interfaces for Expressing Periodic Task Schedules

Listing 3.3: Choosing the algorithm depending on the value of interval

def planned_time(in_builds = ThisBuild)

case 1interval

when ’daily’
planned_time_daily(in_builds)

when ’weekly’
planned_time_weekly (in_builds)

when ’monthly’
planned_time_monthly(in_builds)

end
end
Listing 3.4: Values of the keywords LastBuild, ThisBuild, NextBuild
LastBuild = -1
ThisBuild = 0
NextBuild = 1

attribute are taken from DateTime.now while the hour attribute is determined by
created_at (line 3 in Listing . Smaller units of time (e.g. minutes and seconds)
are omitted and therefore implicitly set to zero. Afterwards, there is a correction by
adding one day if the cron job should have already run today. In this case ThisBuild
is tomorrow (line 4). The last step in planned_time_da1ily is adjusting the Date-
Time object by adding or subtracting one day if NextBuild or LastBuild is requested
instead of ThisBuild (line 5).

In the following code snippets the + operation between DateTime objects and
Integers returns a DateTime object with a number of days specified by the Integer
added to the original DateTime object. The >> operation between DateTime and
Integer is similar but adds months instead of days to the original DateTime object [39].

Listing 3.5: Algorithm for assembling DateTime object with a daily interval

def planned_time_daily(in_builds)
now = DateTime.now
build_today = DateTime.new(now.year, now.month, now.day, created_at.hour)
return build_today + 1 + din_builds if (now > build_today)
build_today + in_builds
end

The algorithm for weekly intervals (as shown in Listing basically does the
same as the one for daily intervals but rounds up the day part of the DateTime object
to the next fitting weekday (line 4). Also, the 1-day corrections for daily intervals
become 7-day corrections for weekly intervals (lines 5-6).

48

3.6 Evaluation

Listing 3.6: Algorithm for assembling DateTime object with a weekly interval

def planned_time_weekly(in_builds)
now = DateTime.now
build_today = DateTime.new(now.year, now.month, now.day, created_at.hour)
next_time = build_today + ((created_at.wday - now.wday) % 7)
return build_today + 7 * (1 + in_builds) if (now > next_time)
next_time + 7 x in_builds
end

For monthly intervals, the DateTime object for ThisBuild is assembled by calculat-
ing the month difference between now and the creation time (lines 5-6). This month
difference is added to the creation time which results in the point in time the cron
job had to run this month (line 7) Afterwards it is checked if this point in time is
in the past (the cron job already had to run this month). If so, one month is added
for correctly providing ThisBuild. Finally, in_builds is used for correction by one
month if NextBuild or LastBuild is requested instead of ThisBuild.

Listing 3.7: Algorithm for assembling DateTime object with a monthly interval

def planned_time_monthly(in_builds)
now = DateTime.now
created = DateTime.new(created_at.year, created_at.month, created_at.day,
created_at.hour)
month_since_creation = (now.year * 12 + now.month)
- (created_at.year * 12 + created_at.month)
this_month = created >> month_since_creation
return created >> (month_since_creation + 1 + 1din_builds) 1if (now > this_month)
created >> (month_since_creation + 1in_builds)
end

3.6 Evaluation

With our implementation of periodic task schedules we tried to achieve two main
goals: Simplicity for the users as well as load balancing to avoid bursts on the Travis
Cl infrastructure.

'°If the cron job has to run on a day that is not existent in the current month (for example
there is no 31st June), the last day of the month (e.g. 3oth June) is selected. This strategy
is part of the implementation of the Ruby Date class.

49

30 -

20 —

count

0 -

3 Interfaces for Expressing Periodic Task Schedules

interval .daily

monthly weekly

disable_by_build .false

true
(a) Ratio of intervals chosen by users

(b) Share of cron jobs with disable_by_-
build flag

Figure 3.12: User choices concerning cron jobs

- L

T T
00:00 06:00

12:00 18:00 00:00
created_at (UTC)

Figure 3.13: Histogram of created_at times

50

3.6 Evaluation

Simplicity We tried to achieve simplicity by providing only a minimal set of con-
figuration options. The user has to choose only the branch that has to be addressed
by the periodic task, the interval size and if a cron job should be skipped if there
was another build (e.g. triggered by a commit and push) during the last interval
(disable_by_build key). After making the cron feature open to the public, we fig-
ured out some users do not understand the meaning of the disable_by_build key.
We had issues describing the effect of enabling /disabling this key in an understand-
able manner while keeping the explanation text short so it does not break the user
interface. However, as Figure shows, most users disable the key although it
was enabled by default. This draws the conclusion that either most users understood
the meaning since they actively decided against using this feature or the users just
disabled the key because they did not know what it does and therefore did not want
it to be enabled.

Another issue in the user interface is the way of displaying when the cron build
is enqueued. As long as a cron job is not due, the due time is displayed. In contrast,
when a job is overdue, the current time is displayed to express that the job has to be
scheduled right now. While this approach is suitable for the scheduler, it is confusing
for users since they expect the job to start now. Unfortunately the service starting the
jobs runs only once an hour. Therefore jobs can be overdue for up to one hour which
leads to counting due times over a relatively long period of time which is confusing
for users.

Load Balancing To avoid bursts on the Travis CI infrastructure we tried both re-
ducing and balancing the load produced by periodic tasks. Load reduction was tried
to achieve by setting the default configuration of the user interface so that it pro-
duces the least load. Therefore “monthly” is the default option for the interval size
and the disable_by_build key is set to true. As the charts in Figure show, the
users are showing a greedy behavior. Chart[3.12a]expresses that “daily” is the most
common interval option while “weekly” and “monthly” are rarely used. There are
even users requesting hourly running cron jobs. This option is however not provided
due to capacity issues. Congruously, chart shows the disable_by_build key
to be disabled in approximately two thirds of the cron jobs. Another mean of load
reduction is limiting the number of cron jobs to one cron job per branch. This cannot
be influenced by the user and is enforced on database level.

In addition to the attempt of load reduction, load balancing is applied to cron jobs.
The mean of distributing cron jobs equally over the day is not letting the user specify
the time a cron job has to run but using the creation time. This implies that a cron
job runs daily, weekly, or monthly at its time of creation. Since the users of Travis
are distributed around the globe and hence in different time zones which leads to
different work times, the creation times are distributed over the day and thus the
enqueuing times are also distributed. Figure shows that this concept works well,
except for the peak around 18:00.

At the time of writing this chapter, there were a total of 120 cron jobs. With respect
to that it is too early to draw meaningful conclusions out of this data. Currently, the
chosen approach seems to be sufficient while not perfect.

51

3 Interfaces for Expressing Periodic Task Schedules

There is another advantage of using the creation time as the enqueuing time (called
to in the mathematically motivated point-vector model), namely that the user is able
to influence the creation time while not being encouraged to do so. This implies that
if a user has an important need to run a cron build at a specific time the user can just
create the cron job at this time (of the day, week, or month). If the user does not care
about the time of enqueuing (which we expect to be the default case), he can just
create the cron job without considering the time.

3.7 Related Work

The idea of periodic schedules was already topic of other works. The two paradigms
of expressing periodic schedules presented in this work are actually used. They are
combined (cf. section [3.4.3) or modified when in use, though.

3.7.1 Ruby/RUNT

Martin Fowler proposed an approach for implementing pattern based recurring
events [20]]. While the way of dealing with recurring events described in Fowlers work
shows strong similarities with the conditional periodicity proposed in this chapter,
the work by Fowler has a stronger focus on the implementation. This approach was
later implemented as the RUNT (Ruby Temporal Expressions) package for Rub
The concept of RUNT is to create expressions that can be matched by a Date or a
DateTime object. Listing 3.8/ shows how temporal expressions can be created. More
complex expression can be created by the use of conjunctions (&) and disjunctions
(]). In Listing [3.9| an expression matched by each Tuesday afternoon is constructed
out of an expression matched by Tuesdays and an expression matched by afternoons.
Also, an expression matched by Tuesdays and Thursdays is created. To check, if a
Date of DateTime object matches the expression, the method include? is defined
for RUNT expression objects. Listing depicts the usage of include? [31, 32].

Listing 3.8: Creating temporal expressions with RUNT in Ruby

tuesdays = DIWeek.new(Tue) # every Tuesday matches
afternoons = REDay.new(12,0,18,0) # between 12:00 and 18:00
octobers = REYear.new(10) # 10th month of the year

Mhttps://github.com/mlipper/runt (visited on 2016-06-21).

52

3.7 Related Work

Listing 3.9: Combining temporal expressions using conjunction and disjunction

tuesdays = DIWeek.new(Tue)
thursdays = DIWeek.new(Thu)
afternoons = REDay.new(12,0,18,0)

tuesday_afternoons = tuesdays & afternoons
tuesdays_and_thursdays = tuesdays | thursdays

Listing 3.10: Checking if a Date (or DateTime) object matches the expression

octobers
day_in_march
day_in_october

REYear.new(10)
Date.new(2016,3,10)
Date.new(2016,10,3)

octobers.include? (day_in_march) # => false
octobers.include? (day_in_october) # => true

3.7.2 Microsoft

In 1996 the Microsoft Corporation together with Redmond and Wash requested a
patent [41] for another approach of representing recurring events. Their approach
is designed for high expressiveness and was originally built for calendar software.
There are strong similarities between the solution by Microsoft and the hybrid pe-
riodicity type introduced in this work (section [3.4.3). The periodicity format by
Microsoft features equi-sized intervals in the manner of point-vector periodicity
combined with time range limitation and other conditionals as depicted in section
The primary issue with the format presented in the patent is the high complex-
ity which makes it unsuitable for end-user interfaces while being still convenient
as interface for experts or as APL. The patent mainly focuses on the data structure
required by this approach, but also presents an algorithm for evaluating recurring
events using this approach. The data structure introduced by the patent contains 15
fields:

start date Specifies the start of the period the recurring event is defined for.
end date Specifies the end of the period the recurring event is defined for.

recurrence type A bit mask stating which of the following seven fields are to be eval-
uated. Each of the following field is evaluated if and only if the corresponding
bit in the recurrence type field is set to 1.

day interval If enabled, indicates the number of days between the occurrences of
the recurring event. The first occurrence is at the start date defined above.

week interval If enabled while month interval and month of year are disabled, indi-
cates the number of weeks between the occurrences of the recurring event. The

53

3 Interfaces for Expressing Periodic Task Schedules

first week is then by definition the week the start date is in. If enabled while
either month interval or month of year is also enabled, indicates which week of
the month is affected by the recurring event. When using any month key with
the week interval key, there is only one week per month where occurrences can
be in. There are no occurrences in another week of the month.

month interval If enabled, indicates the number of month between the occurrences
of the recurring event. First month is the month where start date is in.

year interval If enabled, indicates the number of years between the occurrences of
the recurring event. First year is the year where start date is in.

day of week A bit mask of seven bits stating which days of the week occurrences
are at. Needs to be enabled by the recurrence type field.

day of month A bit mask of 31 bits stating which days of the month occurrences
are at. Needs to be enabled by the recurrence type field.

month of year A bit mask of 12 bits stating which months of the year occurrences
are at. Needs to be enabled by the recurrence type field.

start of week A day of the week the week starts with.

start time Specifies the start of the time frame at a given day for each occurrence of
the recurring event.

end time Specifies the end of the time frame at a given day for each occurrence of
the recurring event.

timezone States the time zone times are expressed in.

description A human readable description of what is expressed with the fields
described above.

Note that there are combinations of fields in use that are not meaningful. For example
a combination between month interval and month of year leads to overspecification of
the month part which raises the question of whether the first or the latter specification
is more important. The behavior for this case is undefined. Therefore only some bit
combinations are permitted for the recurrence type.

The algorithm evaluating if a given date contains an occurrence of the recurring
event works top down. The checks performed are (in this order):

1. Does the year match the record?

2. Does the month match the record?
3. Does the week match the record?
4. Does the day match the record?

5. Are there any exceptions (like overspecification problems described above)?

54

3.7 Related Work

The whole algorithm uses days as smallest unit of time to iterate over. The time part
is generated after the checks using the fields start time and end time. This is performed
in GMT with a time correction transforming GMT to the time zone stated in the time
zone field afterwards.

3.7.3 Android
The Android operation system provides two means of dealing with periodic tasks [2].

Alarm Type There are two different approaches of dealing with periodic tasks.
These approaches are called “alarm types” in context of Android and are imple-
mentations of the point-vector periodicity presented in this section The first
alarm type is called “elapsed real time”. Android is counting the time since it booted.
This time is used as continuous and linear reference time that abstracts from issues
like time zone changes, calendrical inconsistencies”|and leap seconds. A developer
using this implementation of periodic schedules only has to define an interval (in
milliseconds) and a task (referenced by an Intent) that has to be executed. In the
point-vector model tj is then the “elapsed real time” (the time since boot) at the
time when the periodic task schedule is issued. A fixed time-offset can be applied
to to, though (Listing 3.11). The value of At is the interval defined by the developer
and i is a in INp and can therefore not be negative since every point in time before
to already passed. When the system reboots, the periodic task schedule has to be
reissued which leads to a reset of fy. Thus values for ¢; smaller than ¢y can not be
reached.

The second alarm type is “real time clock” which means UTC wall clock time.
This is used when execution at a specific time of a specific day has to be achieved. In
contrast to “elapsed real time” not only the interval size At can be specified, but also

the starting point #, (Listing [3.12).

Listing 3.11: Creating exact recurring events starting in 10 minutes, repeating every
half hour. AlarmManager .INTERVAL_HALF_HOUR is a constant containing the
value 1800000 which is half an hour expressed in milliseconds.

alarmManager.setRepeating(AlarmManager.ELAPSED_REAL_TIME,
10 x 60 x 1000, // starting in 10 minutes (offset to current time)
AlarmManager .INTERVAL_HALF_HOUR, // repeating every half hour
somelntent);

2The major inconsistencies in calendars are connected with the number of days in a month.
There is a need to know the month to conclude how many days the month contains.
Another inconsistency is that weeks and months are both units of time in use without
being connected to each other. Therefore there is no way to conclude from the day of the
month to the day of the week or vice versa.

55

3 Interfaces for Expressing Periodic Task Schedules

Listing 3.12: Creating exact recurring events using “real time clock” alarm type. A
starting point ¢y is manually specified by using the current time and manipulating
the hour part.

// specify date and time for today at 17 o’clock
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.currentTimeMillis());
calendar.set(Calendar.HOUR_OF_DAY, 17);

// create recurring event that fires today at 17 o’clock and repeats every day
alarmManager.setRepeating(AlarmManager.RTC,

calendar.getTimeInMillis(),

AlarmManager .INTERVAL_DAY,

someIlntent);

Wake Up Next to choosing the alarm type, the developer has to specify if the
recurring event has to fire if the device sleeps. Firing if the device sleeps is called
“waking up” the device. If “waking up” is enabled, the alarm will fire at the time
it is scheduled even if the device is sleeping. To enable “waking up”, the keyword
ELAPSED_REAL_TIME has to be replaced with ELAPSED_REAL_TIME_WAKEUP and
the keyword RTC has to be replaced with RTC_WAKEUP, respectively. With disabled
“wake up” option and a device currently sleeping, the alarm is postponed until the
next awaking.

Precision The scheduler for recurring events in Android offers two different modes
for dealing with precision. Firstly, there is the setRepeating() method that issues
a recurring event with exact scheduling without leaving room for optimization. Sec-
ondly, the setInexactRepeating() method can be used for creating recurring
events that can be optimized by the scheduler. The events are then scheduled earlier
or later with the goal to run many recurring events together. This reduces drain
on the battery due to fewer wake ups. When using setInexactRepeating(), only
some values for the interval are permitted. A list of permitted interval sizes can be
found in the reference manual of the Android AlarmManager [3]. It is nonetheless
recommended to use setInexactRepeating() to avoid battery drain.

3.8 Conclusion

There are different ways of expressing periodic task schedules. When trying to
choose an appropriate solution for a specific use case, different approaches have
to be taken into account. In this work we presented two paradigms of expressing
periodic schedules, point-vector periodicity and conditional periodicity, while de-
scribing advantages and disadvantages in terms of understandability, precision, and
expressiveness. With focus on understandability we decided to use a simplified ver-

56

3.8 Conclusion

sion of point-vector periodicity in our solution. The implementation and issues we
ran into are also subjects to this work. There are formats for recurring events that are
different from the solutions we presented. Nonetheless these approaches are often
attributable to the presented paradigms or are hybrid form of them.

57

4 Dependency Management for Hosted
Continuous Integration Services

Dependencies are an integral part of modern software development. Unstable dependencies
can potentially alter or even break applications at any time. Testing software whenever its
dependencies are changed ensures that the developers immediately learn about any such
impact so they can make the necessary adjustments. This chapter proposes a feature addition
to the continuous integration service Travis CI which accomplishes that. It lets users create
dependency relations between projects tested on Travis CI and build up dependency graphs.
The finishing of a build triggers the dependants to be tested, forming build sequences
along these graphs. The resulting information is presented using status badges and helps
developers identify external problem sources faster.

4.1 Introduction

Dependencies have become almost inevitable in software development. Unstable de-
pendencies pose a constant risk because they can transform over time. Such changes
are capable of having drastic effects on their dependants [16, |43]. Knowing about
any such repercussions is time critical.

This problem has in part been solved by a number of continuous integration (CI)
tools through build pipelines, but only for dependencies between modules of the same
project or organization [23} |24} 28|]. We aim to bring this approach to the hosted CI
service Travis CI. This would open up the possibility to declare dependency relations
with external software tested on Travis.

GitHub is a social network for programmers, hosting over 38 million project reposi-
tories [22], of which many are interrelated and through which users can connect and
reuse each other’s code. Travis is tailored to integrate seamlessly into GitHub and
allows users to automatically run their software tests whenever they push changes
or make a pull request.

We propose an additional feature for Travis that notifies users whenever their
application has been affected by changes made to its dependencies.

Our solution enables developers to create dependency relations between GitHub
repositories and build up dependency graphs. This way, whenever a dependency has
been updated, its dependants are automatically tested on Travis, resulting in what we
call build sequences. The results of these tests are presented through status badges
on the repositories” GitHub page for the status of dependencies and dependants, as
well as visualisations on the Travis website, helping programmers keep control over
their dependencies.

59

4 Dependency Management for Hosted Continuous Integration Services

4.2 Background

According to the Oxford Dictionary, a dependence is “the state of relying on [...] someone
or something else” [36]. The one that is relied upon is called the dependency, the other
is called the dependant.

This concept plays a major role in software architecture today, because when work-
ing on modern software projects, most developers rely on already existing technolo-
gies. They use premanufactured hardware, program on top of existing software like
operating systems, rely on common practices, and reuse already written source code
that can either stem from themselves or from external sources. This radically reduces
the efforts needed to create the desired piece of software, but creates the aforemen-
tioned state of reliance, which can sometimes have many far reaching complications.

Most software projects incorporate more than just one dependency, and depen-
dencies often have multiple dependants. The dependency graph in Figure in
which each node represents a direct or indirect dependant of the npm package asynd]
illustrates this. This means that the changes made to a depended upon project af-
fects many others, in the case of async at least 25 % of all npm packages [43]. These
numbers are from July 17, 2013, and since async is still in active development with
currently (July 5, 2016) over 18,300 Stars on GitHub, they have probably already
increased a lot. A recent example showing how large dependency graphs can be
problematic were the disastrous consequences of the unpublishingf| of the npm
package left-pad’s repository from GitHub by its owner Azer Kogulu (azer on
GitHub) because of a copyright dispute. Left-pad consists of only eleven lines of
code, yet it was being used by thousands of other projects, which all broke instantly.
Affected were also large scale projects like ReactPl| which is developed by Facebook
and Instagram and used e.g. by billion dollar companies such as Netflix and Airbnb.

Explicit and Implicit Dependencies

Dependencies can be divided into two different types. Explicit dependencies are exter-
nal code (e.g. software libraries), that is incorporated directly into a project. Before be-
ing able to reuse such code, the developers have to explicitly declare the dependency.
This is done either directly within the code (e.g. by adding #include <libraryname>
to a C file), or in dedicated dependency specification files (e.g. the Gemfild'|in Ruby,
see Listing [4.1).

Implicit dependencies are usually autonomous entities that the dependant interacts
with. They can also be referred to as infrastructure dependencies [43] and take on
many different forms. They are not explicitly specified within a project’s code, but
removing them from the setup or changing them could result in erroneous behavior
or even make it entirely impossible to use the dependant. Examples would be a

https://github.com/caolan/async (visited on 2016-07-05).
2https://medium.com/Q@azerbike/i-ve-just-liberated-my-modules-
9045c06be67c#.nttcIx78y (visited on 2016-07-05).
3https://facebook.github.io/react/index.html (visited on 2016-07-05).
4http://bundler.io/v1l.3/man/gemfile.5.html (visited on 2016-05-25).

60

https://github.com/caolan/async
https://medium.com/@azerbike/i-ve-just-liberated-my-modules-9045c06be67c#.nttc9x78y
https://medium.com/@azerbike/i-ve-just-liberated-my-modules-9045c06be67c#.nttc9x78y
https://facebook.github.io/react/index.html
http://bundler.io/v1.3/man/gemfile.5.html

4.2 Background

Sopgpngt .
i SR

Figure 4.1: "The dependency graph of the npm package async (red, middle right). The graph
has a total of 8 797 nodes and 13 725 edges” [43]

61

4 Dependency Management for Hosted Continuous Integration Services

need for an operating system that supports the POSIX standard or a web API that
the dependant needs to contact constantly, which therefore has to always be online.
Implicit dependencies can also be a certain type hardware, but in this chapter we
will only focus on software dependencies.

Any dependency, be it explicit or implicit, can for different reasons be called un-
stable. This is the case if it is possible for the dependency to change in some way at
any time.

Explicit dependencies are unstable if they are loosely specified. The following exam-
ple illustrates this. A Gemfile like the one in Listing|4.1/can describe a Ruby project’s
explicit dependencies in two different ways: They are tightly specified, if they have
a fixed version next to them (see Listing Lines 3 & 4), and they are loosely speci-
fied, if they do not. Instead it could be declared that the project supports anything
newer than a certain version (see Listing[4.1} Line 5), or by only naming their GitHub
repository (see Listing Lines 6 & 7), which always refers to the dependency’s
latest available version. Since they can over time point towards different states of the
dependency, such loosely specified dependency declarations are unstable.

An unstable implicit dependency like an online service could go offline, or another
module in a modular architecture could for example suddenly change its behavior.

Listing 4.1: An example Gemfile for a fictional Ruby project

source ’https://rubygems.org’

gem ’activesupport’, ’4.0’°

gem ’metriks’, ’0.9.9.6°

gem ’nokogiri’, ’>=1.4.2°

gem ’travis-core’, github: ’travis-ci/travis-core’
gem ’yard-sinatra’, github: ’rkh/yard-sinatra’

For developers, unstable dependencies can sometimes be very desirable, as the
changes made to them are usually meant to be enhancements, like improved speed
or memory usage. Thus having the reused technologies on the bleeding edgef|can be
advantageous but, because of their unpredictability, also cause problems. These are
in general not knowing when or whether the dependency will or has been updated,
not knowing what has been changed, and having to adjust one’s software whenever
the changes have had unwanted impact.

In the following pages we will discuss our solution of this problem which combines
dependent builds with the structural advantages of hosted continuous integration
systems that are integrated into repository hosting services, focusing on Travis CI in
particular. However, the concept and its benefits could be transferred to any other
hosted CI service.

5"The most advanced stage of a technology [...], usually experimental and risky” [14]. Using the
bleeding edge of a technology thus refers to always employing the latest version.

62

4.3 Motivation

4.3 Motivation

A common practice in continuous integration is for developers to test their entire
software system after each integration, which is a key feature of hosted CI services
like Travis. But testing on own code changes alone is insufficient, since, as we have
examined above, changes to the dependencies can also alter the dependant systems’
behavior. Therefore running tests after changes made to their dependencies would
prove useful for many software projectslﬂ

To a degree, continuous integration tools like Jenkins and TeamCity have already
solved this problem by letting users define so called build pipelines. However, since
these tools only operate inside the context of a single organization or project, the set
of selectable dependencies is constrained. It follows that dependency graphs defined
using these tools cannot include external software, which makes them unable to
solve the problems presented above, since these are caused by external dependencies,
which the developer does not have any control over.

It would furthermore be of interest for developers who use hosted CI systems
to integrate dependency support within the global infrastructure of that service,
notably the synergic complex of GitHub and Travis CI, and their large user base.
The 15 million GitHub users with their 38 million repositories and the more than
300,000[| of these that use Travis CI [22], could benefit from creating dependency
graphs of them.

Throughout this chapter we will use Travis as an example project, on which we
will base the needed requirements for a useful dependency management feature. Fig-
ure shows a small fraction of the software dependencies within the architecture,
with some fictional modules and dependency relations addedﬂ

Travis” infrastructure is based on several software modules that are all intercon-
nected and hence depend on each other. They all have a GitHub repository and since
most of them are also tested using Travis Cl itself, it would be convenient for them to
have a test pipeline according to their dependency graph. The developers at Travis
CI would be notified if a change to one of their modules has broken another one and
they could immediately fix the problem, instead of being informed about it by a bug
report from a user after an indefinite amount of time.

Some of these modules also depend on external software such as Sinatraff| which
is hosted in a GitHub repository itself. Say one module has Sinatra in their Gemfile,
pointing to the GitHub repository, which is a loose specification, since Bundler will
always clone and then install the gem’s current state of the project’s master branch (if

®A different solution to this problem, namely the use of periodical testing, is discussed in
chapter

7Taken from the repository counter on https://travis-ci.org (visited on 2016-06-10).

8The fictitious repositories travis-1ib and travis-web-mobile were included because
the design decisions that would lead to certain problems addressed within this section
were not present in Travis” actual architecture.

Shttps://github.com/sinatra/sinatra (visited on 2016-06-14).

63

https://travis-ci.org
https://github.com/sinatra/sinatra

4 Dependency Management for Hosted Continuous Integration Services

Travis Cl
<<component>> £]
travis-lib
*
<<component>>$:‘ <<component>> 2]
travis-core [e-----------t---- travis-sidekiq
A :
<<component>>] <<component>> £ | <<component>> €]
sinatra e === travis-api [€----sesssmssmsmmooooooeoe travis-web
*
' <<component>> €]
-------- 3 travis-web-mobile {--------
L I

Figure 4.2: An excerpt of the complex dependency system in the Travis CI infras-
tructure with some added details, represented through UML syntax.

no other branch is specified)°|If someone wanted to clone or fork that module, and
they see that its latest Travis build was successful, they should be able to assume that
a local test on their own computer would also be successful. But even though the
current state of the codebase equals that from the latest test (which could have been
done long ago, because nobody has been working on it), the local test could still fail
because of that loosely specified dependency. Since that last build on Travis, Sinatra
could have in the meantime been changed substantially. Its latest version could break
the module and Travis CI would be oblivious to the incompatibility. This can cause
all sorts of problems and frustration for both the developers of Travis and the people
of the open source community. It would therefore be very helpful for developers to
know that a change to one of their dependencies has broken their project.

The Missing Feature

A feature request for dependent builds has been made via the GitHub Issue tool
(see Figure , which shows that the community does have a certain interest in
such a feature. It is now closed because the idea has been put on the list of features
that Travis CI wants to add to its service. Moreover, the various workarounds that
users have come up with over the time to create dependent builds demonstrates the
usefulness of such a feature.

Ohttp://bundler.io/git.html (visited on 2016-06-14).

64

http://bundler.io/git.html

4.4 Approach

Dependent builds

(64Xl dkubb opened this issue on Sep 7, 2011 - 23 comments

m dkubb commented on Sep 7, 2011

An awesome feature to have would be a way to specify project dependencies (or better yet infer them from
the Gemfile/gemspec), so that when a project builds successfully, all it's dependents' (that travis knows
about) are built too.

This is a feature we use in the DataMapper Cl, where anytime dm-core passes, it executes a build for every
other dependent gem.

Figure 4.3: The feature request on GitHub for dependent builds. The conversation
that followed can be read in full at https://github.com/travis-ci/travis-
ci/issues/249 (visited on 2016-05-30).

A noteworthy example was implemented by the company RightScale[™| Their solu-
tion identifies a build as belonging to a repository that is a dependency to others and
then runs a custom shell script called trigger-dependent-build to test the depen-
dants. To get notified about a resulting failed build, they employ Slack notificationd]
Others made use of the possibility to include shell commands in the . travis.yml,
through which they triggered builds for their dependant repositories|Nevertheless,
an implementation of dependency support that is directly integrated into the Travis
Cl infrastructure has not been attempted yet.

For these reasons we have designed a solution to add a dependent builds feature
to Travis.

4.4 Approach

Throughout this Section, we will present concepts behind our proposed dependent
builds feature for Travis CI. We start out with a very general description of its func-
tionality, followed by an abstract view on how to test the compatibility of interdepen-
dent modules in dependency graphs. The rest will be detailed considerations of all
aspects of the design, describing how it works and how the users would interact with
it. A key component of the design is a new module for the Travis CI architecture
named DependencyManager, whose behavior is described in depth in the passage
Running a Build Sequence of this Section.

Thttps://eng.rightscale.com/2015/04/27/dependent-builds-in-travis.
html (visited on 2016-05-30).

Zhttps://api.slack.com/incoming-webhooks (visited on 2016-05-30).

3 An example for this can be found at https://github.com/mernst/plume-1ib/blob/
master/bin/trigger-travis.sh (visited on 2016-05-30).

65

https://github.com/travis-ci/travis-ci/issues/249
https://github.com/travis-ci/travis-ci/issues/249
https://eng.rightscale.com/2015/04/27/dependent-builds-in-travis.html
https://eng.rightscale.com/2015/04/27/dependent-builds-in-travis.html
https://api.slack.com/incoming-webhooks
https://github.com/mernst/plume-lib/blob/master/bin/trigger-travis.sh
https://github.com/mernst/plume-lib/blob/master/bin/trigger-travis.sh

4 Dependency Management for Hosted Continuous Integration Services

4.4.1 Basic Requirements

At large, the proposed feature addition for Travis CI should enable the users to
establish dependencies between repositories to test for errors resulting from changes
to the dependencies of a project. It should be completely integrated into the already
existing modular infrastructure of Travis CI'4| A user should be able to conveniently
create a directed relation > between two GitHub repositories A and B that both use
Travis CI. This relation A > B then represents a dependency of repository A from B
(see Figure which can, depending on the context, either be explicit or implicit.
If such a relation has been declared, then it should follow that whenever B is tested
in Travis CI, its dependant A will be tested subsequently using the new version of
the dependency.

] £]

<<component>> <<component>>

B feree A

Figure 4.4: A simple dependency relationship of a software module A from a soft-
ware module B in UML syntax

What follows from these dependency declarations is the feature’s capability to
let the user create dependency graphs based on their project’s dependency infra-
structure, like the one shown in Figure The successive testing of the repositories
in the dependency graph’s subgraph with the first built project at the root will be
called build sequence within this chapter.

For developers, the most important information that results from this will be that a
build fails because of a change to a dependency. If this happens, they should therefore
be notified immediately. It would also be helpful to visualise the build sequence on
the Travis website to show the build chain that made a dependant’s test fail. Then
the developer is able to easily identify the code changes that caused the errors, as
the build chain can be traced back to a definite push to GitHub.

Another important and widely used feature of Travis is the testing of unmerged
pull requests. Testing dependants for compatibility with the dependency in the state
after the pull request merge is therefore also required.

4.4.2 Testing of Dependencies

On the most basic level, testing a software with an architecture based on interde-
pendent modules whenever one of them has changed can be accomplished by trans-

14See for a detailed description of the architecture of Travis CL.

66

4.4 Approach

forming the dependency graph to a tree[| starting from the just updated module
and then kicking off a build sequence. This means that whenever a module has been
built and tested, its dependants will then also be tested, but always using the new
resulting version of all dependencies in the graph.

Since dependencies can be both explicit or implicit, they vary greatly in their
nature. It is hence important to consider what dependency compatibility testing
has to look like, so that changes pushed to a dependency could potentially cause a
dependant’s tests to fail. In both cases the most important prerequisite is of course
that the dependencies are somehow usable by the dependant’s tests. To achieve this,
Travis Build will need an installation script for each node from the build sequence
tree above the dependant, which it concatenates in the build order and then injects
into the build scrip These scripts have to differ depending on the dependency
type, which the user therefore always has to specify.

Explicitly declared dependencies (e.g. software libraries) are only utilised for
code reuse, which means that their code is employed directly within the dependant
project’s code. But for certain programming languages just cloning a dependency’s
repository does not suffice to make it usable. In the case of C++ for example, it will
have to be compiled and stored as a dynamically linked library. Hence the installa-
tion scripts for explicit dependencies will need to be language specific. They should
usually equal or be very close to the language’s normal build script without the
actual testing and be provided by Travis.

Implicit dependencies (e.g. an API that is deployed on a server) on the other hand
take on many different roles within software architectures. They can either take the
form of a program running next to the dependant on the same machine, or they can
be deployed on an external server. Testing the support of a dependency of the first
type can again look very different depending on the individual context. The needed
setup script can therefore not be supplied by Travis, but has to be provided by the
user by having it in the dependant’s GitHub repository['7]

This way any sort of integration work that could be needed would be accommo-
dated for. Such scripts would for example include the setup of a local surrogate for
the implicit dependency and changing of certain variables to contact it instead of the
web resource. They could in theory be used for any possible setup and thus grant
much power to the users, but also transfer responsibility to them to employ them
with carelﬂ It could albeit become problematic if the user provided scripts are not
working, or doing nothing but waiting for an event that may or may not occur, but

5In our solution this is done in part when storing the dependencies in the database and in
part during execution of the build sequence (see Section [4.4.3).

1®When installing something, these scripts should first check whether it has already been
done before. In such cases the item has been installed earlier during the execution of
another dependency’s script and should thus not be overwritten but used instead.

7To put these scripts in the dependant’s . travis.yml would not be suitable, since this
would clutter the file with scripts for different dependencies and contexts.

8Making a deploy to Heroku part of the script could for example be problematic, since
in cases like pull request testing, the script would deploy an unmerged branch. Such
considerations should be mentioned in the feature’s documentation.

67

4 Dependency Management for Hosted Continuous Integration Services

travis-ci / travis-web

Current Branches Build History Pull Requests Settings More options

Dependencies

travis-ci/travis-lib

travis-ci/travis-core

pseripsidepioyst | S G

Figure 4.5: Design mockup for dependency creation in the settings page on the
travis-ci.org website, with entries being made corresponding to travis-
web’s dependencies

Travis Cl is already adapted to such cases and stops the job when for example the
log has not produced any output for a certain time.

After a Travis Worker has executed the (concatenated) setup script for the testing
environment to include all the dependencies’ latest versions the actual testing can
begin.

4.4.3 Requirements in Detail

Based on our example project Travis CI we will now examine the requirements more
closely, reveal potential problems, and introduce their solutions. Figure[4.2]illustrates
the architecture’s excerpt which we focused on.

Storing the Dependency Relations
Since the module travis-api depends, next to others, on travis-coreand travis-
1ib, the developer will declare these relationships on the online settings page under
the heading Dependencies| (see Figure[4.5). It was a conscious decision not to place
the dependency declaration into the .travis.yml, because its contents are sup-
posed to describe how a build has to happen, not when. If the switch is set to implicit,
the user can write the path of the setup shell script into the Script field (see Figure
15).

Travis will thus need a new dependencies database table which can, together
with example entries, be viewed in Figure while the corresponding database
migration is shown in Listing [4.2] both in Section [4.5.1]

Q0ur solution does not take branches into account, because typically dependants make use
of the version in the default branch. Still, branches could also be considered in the future
which is discussed in Section [4.8]

68

travis-ci.org

4.4 Approach

After the user has clicked on add, Travis Web will send the names of the depen-
dency and the dependant, as well as the dependency type, and, if implicit, the path to
the custom setup script, to Travis API for it to store the new relation in the database.

Dependency Cycles

The dependency graph of our example is cyclical (cf.[Figure 4.2), which would create
never-ending build sequences, visualised in Figure[4.6] Travis will hence need to keep
track of already tested repositories within each build sequence. Thus when a push
or pull request to travis-11ib has set off a Travis CI test, DependencyManager will,
after the build is done, look through the dependency table and add the repository
to the list of those that have already been tested within this sequence. Additionally,
such a list is necessary for a dynamic presentation of the build sequence on the
website, which will be discussed in the Workflow passage of this Section.

build request

travis-api ’\

(travis-web

travis-web-
mobile

Figure 4.6: The never-ending build sequence resulting from the cycle in the depen-
dency graph. The arrows represent the triggering of its target’s build.

Transitive Dependencies

Our example includes two instances of an additional type of dependency, which in
this work we will call transitive dependency. This type of dependency can be best
illustrated by regarding the modules travis-api, travis-core and travis-1ib.
Since both travis-api and travis-core depend on travis-11ib, a build of the
latter should yield each of the dependants to also run a test. However, travis-core
is another dependency of travis-api, so it would be tested again after the former
has finished.

This double testing is obviously unnecessary and should be avoided, which is why
the design should recognise this type of structure and then automatically skip the
builds. This is made possible by the column sk1ip in the database table. Whenever an
entry to the table is created or deleted, DependencyManager will run an algorithm
that traverses the dependency graph of which the new entry is a part of, identifies
the transitive dependencies, and updates the value of skip for all of the graph’s
relations. Circular dependencies are taken into account, otherwise all of the circle’s
members would be skipped. Section [4.5.2] contains a code draft of the algorithm.

69

4 Dependency Management for Hosted Continuous Integration Services

A different solution would have been to just delete the skippable entries. However,
deletion would only be appropriate if the dependency graphs forbid to have cycles
and if they would never change again, because alterations can always remove the
transitivity, making it incorrect to skip the relation. The resulting build sequence
should equal the one depicted in Figure

Running a Build Sequence

Now we will explain in detail how build sequences are created and executed. Its core
component is our newly proposed DependencyManager module. Most of the work
will be done there, resulting in a solution for which changes have to be made to only
three of the already existing modules, namely Hub, Gatekeeper, and Travis Build.

When a repository is tested by Travis, it has been triggered by an event like a push
or a pull request on GitHub| A build sequence is hence started exactly the same
way.

The original event causes the Listener to send a build request to Gatekeeper, re-
sulting in a build executed by a Travis Worker. When a build has finished, Hub then
sends a message to the new DependencyManager module informing it about the
finished build.

By checking the type of the event that caused the build, DependencyManager then
inspects whether the finished build is already part of a build sequence and if not,
starts a new one by generating a unique ID. Next, it looks into the dependency-table
in the database for dependants of the build’s repository that are not supposed to
be skipped and that have not yet been built within this sequence. If the resulting
list of repositories is empty, DependencyManager ends the algorithm, discarding
any newly generated build sequence ID. If this list is on the other hand not empty,
it will proceed as follows. If the currently handled build is the very first one in the
sequence, the new ID will have to be added to the build’s database entry. For each
of the dependants it creates a build request of the through new dependency type,
which holds the sequence’s ID. After this the algorithm ends.

Gatekeeper creates the corresponding builds and adds the sequence’s ID to each
build’s database entry. If it was a dependent build, Travis Build will, depending on
the dependency type, inject the setup script discussed in[4.4.2]into the build scripts
for the Workers?| Now the build can be run and the modules’ behavior will repeat.

Pull Requests

Next to just pushing changes and seeing whether this has caused any unforeseen
damages, it could also be important to know if the changes from merging a pull
request would bring about any repercussions for dependant repositories.

29A cron event as introduced in chapter [3| should not trigger build sequences, since no
changes have been made to the code. The same goes for builds triggered through API
requests.

21Since Travis Build does not have a connection to the database, a way for it to get the scripts
will have to be added.

70

4.4 Approach

travis-ci / travis-web ©

Current Branches Build History Pull Requests Build Sequence More options

& 36dadoe

travis-lib

travis-core

travis-api travis-sidekiq

travis-web

travis-web-mobile

Figure 4.7: A mockup of the build sequence view on the travis-ci.orgwebsite

When making a pull request to a branch of any repository that is tested on Travis,
GitHub will check whether a merge would have any conflicts, and only if not will
the Travis Listener create a build request. The Travis Worker would clone it via Git
from a link provided by GitHub that points to the repository’s version in which the
pull request is merged and then run the tests as usual.

The behavior of the build sequence triggered by a pull request will be the same
as in the description above, with the only exception that Travis Build will alter the
setup scripts for dependants to clone the dependency’s version of the merged pull
request instead of the usual default branch, like in a usual pull request build. The
supplementary info on the status of the dependants’ build should then be included
in the pull request view on the GitHub page, as shown in Figure

° All checks have passed Hide all checks

3 successful checks

& v i integrati is-ci/pr — The Travis Cl build passed Details
& v gl is-ci/push — The Travis Cl build passed Details
& v i i ion/travis-ci/c — The Travis Cl build passed Details

° This branch has no conflicts with the base branch
Only those with write access to this repository can merge pull requests.

Figure 4.8: Pull request info mockup for GitHub with additional check for depen-
dants

71

travis-ci.org

4 Dependency Management for Hosted Continuous Integration Services

Presenting the Results
After all the tests have run, the developers will have to be notified about the outcomes
of the build sequence. As usual, users can set up notifications via email, Slack, efc. in
their . travis.yml and will learn about failing tests of their repositories” dependen-
cies and dependants accordingly. Email notifications should contain the same visual
summary of the sequence as in the build sequence view on the Travis CI website
(see Figure to which it should also link. This view is further discussed in the
Workflow passage of this Section.

We additionally propose two new status badges]”|shown in Figure that will
be able to represent the following information:

1. Whether the repository is still compatible with the latest changes pushed to its
dependencies

2. Whether the repository’s dependants are still working after the changes from
the latest push

dependencies 'supported | dependants 'passing
dependencies 'unsupported |l dependants | failing

Figure 4.9: The new status badges for dependencies and dependants

They can, just like typical badges on GitHub, be added to the README . md file, so
that their status can be seen immediately on arrival on the GitHub page. The first
badge can be used alongside the typical Travis build status badge, its state will refer
to the latest build caused by push or dependency events, while the normal one will
only point towards the latest build caused by a push event. This procures that, if the
dependencies’ changes are released, the lower the frequency of push events, the less
likely it is that these two badges will have the same state.

The second badge is available to show the developer, whether their latest push
has had any (probably unintended) impact on other repositories or not. If the former
is the case, and they wanted to know the specifics to start fixing the problem, they
would then be able to click on the badge and be redirected to the build sequence
view on the|travis-ci.orgpage (see Figure .

A third important information would be, whether the repository’s dependants
break because of a change to itself, or to a dependency. This does however not require
an own badge, since this is already revealed by the combination of the other two.

The Workflow

We will now consider the following scenario. travis-11ib ’s latest test has failed
and a developer is now fixing the issues. The changes that caused the failed build do

22The badges were made using the service of http://shields.qo.

travis-ci.org
http://shields.io

4.4 Approach

not concern the dependants, so their status is still passing. The developer now pushes
their bugfixes to GitHub, which causes the build sequence to start. After the success-
ful build, travis-core is tested, then in turn travis-api and travis-sidekiig,
and the former’s passing of its tests triggers the test execution for travis-web, which
ends up failing, as does its dependant travis-web-mobile, which we will ignore
in this scenario. The owners of all the tested modules will thereupon be notified, if
their . travis.yml says so.

travis-lib travis-core travis-web

v v v

travis-lib travis-core travis-web

Figure 4.10: The badge status changes to the repositories in the scenario described
in Section travis-api has been omitted, since its badges would be equal
to the ones of travis-core.

The developer would be able to observe the badge changes presented in Figure[4.10]
and the desired workflow that could ensue would look as follows:

Because the work had only been done on travis-1ib, the developer will probably
look at this repository’s badges, which already hold all the information they need.
Since the dependants-badge shows the status failing, the developer is then going to
go to the build sequence view on the website by clicking the badge. This view shows
the build sequence tree with the original event, be it a push or a pull request, that
triggered the first test and caused the succession to start, on top. There they will see
what is shown in Figure |4.7/and are able to identify that it was travis-web that
has failed. By clicking on its box, they will then be redirected to its build log, were
they can go through the failed tests, maybe fix them and either push the changes
or create a pull request. If the subsequent build succeeds, the dependencies-badge
status will change to supported, since it always refers to the latest build not caused
by a pull request event. The dependants-badges of the other three repositories will
also return to passing since they only refer to the AND'ing of the dependencies-badge
status of the dependants.

Removing a Dependency Relation

An uncomplicated workflow equal or close to the one just described is the main goal
of our design. But another far simpler possibility of how developers can sometimes
solve the loss of support for an updated dependency should still be mentioned. Un-
stable explicit dependencies can always be changed to stable ones by adding the last
version number that had been supported to their declaration. Afterwards of course

73

4 Dependency Management for Hosted Continuous Integration Services

should the declaration of the dependency be removed from the dependant’s settings
on Travis, since the dependency feature is only useful for unstable dependencies.

Such a removal of a dependency alters the graph which it was part of. Hence
DependencyManager must run the transitivitiy algorithm again. It checks whether
the removed relation was skippable (in which case the removal did not have any
further effects) and if not, update the skip flag of all repositories that in a build
sequence would come before the dependency and those that would be built after
the dependant. The algorithm is shown in Listing [4.5/in Section

If a repository that is part of a dependency relation is deleted on GitHub or deac-
tivated on Travis, its entries will probably also have to be removed from the depen-
dencies table, with the just described behavior in consequence.

External Dependencies
As of now we have mainly focused on dependency management as it already exists
in tools like Jenkins, which is already a helpful new feature for Travis CI. But it is the
combination with the repository network of GitHub that opens up the dependency
graphs to include external software, which are actually the cause for unexpected
build failures. And since our design does not distinguish between external or inter-
nal dependencies, it can improve the users’ confidence when employing unstable
external dependencies and hence encourage the use of bleeding edge software.
However, leaving it open to users to establish dependency relations between their
and any other project on Travis CI would potentially add immense amounts of new
builds and also create very confusing and overly deep build sequence trees. To solve
this problem without entirely taking away the possibility to include external reposi-
tories in a dependency graph, we propose dependency requests. When a user adds a
dependency that is not part of one of their GitHub organizations, Travis will, before
making the database entry, send a request to the dependency’s owner to accept the
dependant.

4.5 Implementation

In this Section we present implementation details of the proposed design in Sec-
tion [4.4] We will only focus on adapting the database and API to the data needed
for the design as well as our newly proposed module addition to the Travis in-
frastructure, DependencyManager. Other parts of a full implementation, such as the
communication protocols between DependencyManager and Gatekeeper or AP]I, the
user interface for Travis Web, or the new setup scripts for Travis Build are details
that still need clear specifications, which would at some point be modelled after the
eventual use cases.

The code presented here is not part of an implementation in Travis CI. While the
code in Section [4.5.1/ has actually been tested to be compatible with Travis CI}3|that

23Tried with travis-api’s and travis-migrations’s state on June 10, 2016.

74

4.5 Implementation

dependant_id | dependency_id | implicit script skip

1 FALSE NULL FALSE

FALSE NULL FALSE

FALSE NULL TRUE

FALSE NULL FALSE

FALSE NULL FALSE

FALSE NULL FALSE

FALSE NULL TRUE

FALSE NULL TRUE

TRUE “/scripts/deploy.sh” FALSE

olao|lala|s|»|bn|bd|lw|N
als|IN[Rr[~N|[o|NM|Rr|N

FALSE NULL FALSE

Figure 4.11: The new database table for dependencies, referencing the tables from

Figure

in Section[4.5.2]is just a code draft and does not reference any other existing code in
the Travis architecture.

4.5.1 Data Storage

The first step to implementing our solution would be to add the new database ta-
ble dependencies and to extend the build table, by adding a database migration
to travis-migrations (see Listing . The dependency_id and dependant_-id
entries should be foreign keys to repository_id’s from the repository-table. An
entry in the script column is either NULL or a string describing the path to the
shell-script, starting at the root of the dependant’s repository folder, while the entries
in skip are booleans.

To keep a list of the repositories already tested within a build sequence, each new
sequence gets an own ID and whenever a build that is part of it finishes, this ID is
added to that build’s entry in the build-table, for which that table will need a new
build_sequence_id column (see Figure[4.12). Hence the resulting tree is built up
dynamically and it would be possible to visualise this on the website, in contrast to
storing the sequence all at once when it has finished. A more detailed description
of when and by whom everything is stored can be found in this Section’s Running a
Build Sequence passage.

In our design, users create dependency relations on the website, which commu-
nicates with API via restful HTTP requests. API would hence get additional routes
(see Listing[4.3). Then it would also be possible to extend the Travis CLI with the
dependency functionality. API would furthermore need a model to represent the
new Dependency type (see Listing|[4.4).

The Build model one the other hand would need no changes, since the new
build_sequence_1id is just an attribute, no foreign key, and attributes do not have
to be specified in ActiveRecord models.

75

4 Dependency Management for Hosted Continuous Integration Services

Listing 4.2: The migration to the database adding the dependencies table and
extending the build table

class AddDependencies < ActiveRecord::Migration

def up
create_table :dependencies do |t]
t.references :dependency
t.references :dependant

t.boolean simplicit
t.string iscript
t.boolean :skip
end
end
def change
add_column :builds, :build_sequence_id, :integer
end
end

Listing 4.3: The changes needed to be made to the resource :repository entry
in the routes.rb file in the travis-api repository

resource :dependencies do
get :find, > /dependencies’
post :create, > /dependencies’
delete :delete, ’/dependencies’

get :find, > /dependants’
end

Listing 4.4: The model of the dependenciies table

module Travis::API::V3
class Models: :Dependency < Model
belongs_to :repository, as: :dependency
belongs_to :repository, as: :dependant
end
end

76

4.5 Implementation

repository_id name build_id| repository_id build_sequence_id
1 travis-1lib 2418 1 1
2 travis-core 2419 2 1
3 travis-sidekiq
2420 4 1
4 travis-api
- 2421 3 1
5 travis-web
6 travis-web-mobile 2422 5 1
7 sinatra 2423 6 1

Figure 4.12: Parts of the repository and the build table in the database, with the
build_sequence_id column added to the latter. The fictitious values represent
the structure defined in Figure|4.2|and correspond to the build sequence in Figure

both in Section m

4.5.2 DependencyManager

The DependencyManager introduced in Section [4.4] would need to be an indepen-
dent module which could for example be deployed to Heroku, just like Travis Hub.
It needs communication channels to API, Hub, and Gatekeeper, which could poten-
tially be established using Sidekiq (see Figure[4.13). Its two main functionalities are
taking care of transitivities in dependency graphs and making build requests for
dependants when appropriate.

Hub Gatekeeper
notify .
when build sena burd
has finished qu
———— | DependencyManager
inform about
changes to

dependencies

API

Figure 4.13: Communication channels of DependencyManager

Transitivity Algorithms

After having added or removed a dependency, the Travis API will then notify the
DependencyManager by sending it the type of change that was made, as well as the
two repositories in the relation. DependencyManager then runs one of the transitivity
algorithms, depending on the situation.

77

4 Dependency Management for Hosted Continuous Integration Services

When adding a dependency relation, the algorithm goes through all the relations
in the graph that the new one is part of and see, whether some of them have become
transitive, which it then marks as skippable. Because we are only adding a relation,
it is impossible that an unskippable relation becomes skippable.

add dependency relation remove dependency relation

Q(O/OQ—O—O
O<—O<—OQ®O

—— normal relation (direction like in UML,
skippable

— was added
—— s to be removed

Figure 4.14: Examples for the results of the transitivity algorithms, the upper graphs
being in the state before the operation, those below afterwards

When removing a dependency relation, the algorithm first checks whether the
removed one was skippable, in which case it can terminate, and if not, it checks
whether parts of its corresponding graph needs to be updated, since it might have
been cut in half. Because we are only removing a relation, it is only possible that a
skippable relation becomes unskippable.

Cyclical dependency paths are also taken care of, so that when creating a cycle not
all of its elements are skipped.

The pseudo code in Listing[4.5/shows a possible implementation, while Figure[4.14]
visualises the changes based on simple examples.

Making Build Requests

Whenever Hub is notified by a Worker about a finished build, it forwards this in-
formation to DependencyManager. Listing |4.6|shows the ensuing behavior through
the method handleFinishedBuild(build), which entails handling the start of a
build sequence correctly (Lines 3-5, 12-14), finding dependants that need to be built
(Lines 20 ff.), and making build requests for them (Line 16).

78

4.5 Implementation

Listing 4.5: A code draft for DependencyManager’s transitivity algorithms

def addRelation(relation)
#iterate over all possible relations that could now be skipped
for relevantRelations(relation) do |each|
if each != relation
#each 1is not part of a circle
if !pathExistsFromTo(each.dependency, each.dependency)
each.skip = true
end
end
end
#finally check new relation
updateSkipAttr(relation)
end

def removeRelation(relation)
#if the deleted relation was skipped, nothing happens
if !relation.skip
for relevantRelations(relation) do |each|
#only those that are already skipped might not be skipped anymore
if each.skip
updateSkipAttr (each)
end
end
end
end

def updateSkipAttr(relation)
for pathsFromTo(relation.dependency, relation.dependant) do |path]|
if !path.relations.includes(relation)
relation.skip = true
return
end
end
relation.skip = false
end

def relevantRelations(relation)
#returns all relations that are included in paths ending 1in
relation.dependency or starting from relation.dependant
relations = []
for pathsTo(relation.dependency).collect(nodes).flatten do |nodeAbove|
for pathsFrom(relation.dependant).collect(nodes).flatten do |nodeBelow|
relations.push(getRelationIfExistent(nodeAbove, nodeBelow))
end
end
#remove all nils
return relations.compact
end

79

4 Dependency Management for Hosted Continuous Integration Services

Listing 4.6: A code draft for DependencyManager’s handling of finished builds

def handleFinishedBuild(build)

if build.event_type != ’dependency’
sequenceID = self.getNextSequenceID()
else
sequenceID = build.sequencelID
end

dependants = self.getDependantsToBeBuilt(build.repository, sequencelD)
if dependants.empty?
return
end
if build.event_type != ’dependency’
self.storeSequenceIDtoBuildInDatabase(build, sequenceID)
end
dependants.each do |dependant|
self.createBuildRequestFor (dependant)
end
end

def getDependantsToBeBuilt(repository, sequencelD)
dependants = []
repository.dependants.each do |dependant|
if !dependant.skip && !self.alreadyBuilt(dependant.id, sequencelD)
dependants.push(dependant)
end
end
return dependants
end

8o

4.6 Evaluation

4.6 Evaluation

Our approach is a trade-off between complexity and usefulness. We left out features
like pull request testing for implicit dependencies to reduce complexity, but let users
create dependency graphs containing multiple dependency relations for build se-
quences. Instead we could have constrained these graphs to only one relation. This
way most of the problems discussed in this chapter would not arise. This way it
would take a lot less effort to implement the feature, but also yield far less informa-
tion for the users, drastically reducing the usefulness. This also leads to the question
of how valuable the generated information actually is.

Build sequences like the one shown in Figure |4.7|are in some ways problematic
because there can be various different explanations for what actually caused the
build to fail. It could be that the changes to travis-11ib have caused a waterfall
of behavior changes to travis-core, travis-api, or both, so that travis-web
could not use them anymore, or the direct relations of travis-1ib and travis-
core, which are both not visible in the build sequence view, but still defined in
the settings could lie at the root of the problem. Even though it is interesting that
something has been broken, the multitude of possible explanations does not at all
help the user to know what to do and where to look for the problems’ cause. The
feature’s focus should therefore be well defined. Is the main goal to just inform the
user that something has broken, or should the user also be supported in finding the
cause? If the latter is the goal, then the solution should be extended, for example by
also making it possible to present the transitive dependencies in the build sequence
view. Otherwise the proposed solution should suffice.

Just like architectures with multiple inheritance in object-oriented design, depen-
dency graphs are susceptible to the diamond problem [} 33]]. If such a constellation
occurs, our solution will behave nondeterministically. If a build sequence based on
a dependency graph with the diamond dependency (B > A) A (C = A) A (D >
B) A (D > C) was started by A, D would only be built once, triggered by whichever
of B or C finishes first, since DependencyManager allows a repository to be tested
only once per sequence. The slower one would hence not be considered in the build
script, which could potentially be a problem for some users.

If implemented, the dependent builds feature would have a lot of impact on Travis.
Not only might already existing users test their software more extensively, but it
could also attract many new developers to start using the service, resulting in large
amounts of additional builds.

But since Travis Cl is a commercial company, feasibility is an important factor when
deciding on adding a feature or not. The financial costs caused by its development,
as well as all the additional builds should reflect the added benefits for the users.
Thus any implementation should have preceding cost impact calculations. If these
would come to show that for it to be feasible, the feature would need to somehow
be constrained, the following ideas could be considered.

¢ The design could have dependency creation limits for each repository, user, or
organization.

81

4 Dependency Management for Hosted Continuous Integration Services

* Sequences could only be triggered if a push contains commits with a certain
tag exactly for that (which could be either defined by the user or Travis).

* Build sequences could stop after a certain depth.
¢ The whole feature or parts of it could be only available to paying costumers.

* External dependencies could be left out/paying costumer only.

4.7 Related Work

The focus of this Section is the examination of the topic of dependency resolution in
package management, the plethora of different CI tools, and their intersection. We
will look at Jenkins CI, its solution for build sequences along dependency trees, and
its ideas and constraints that have laid the groundwork for this chapter.

To help end users with the complexP*¥|task of installing an application, it is nowa-
days common for operating systems to include some form of package management.
A package is usually an archive file with the software itself and metadata such as
the version number, the vendor, and a list of dependencies. When one such package
is to be installed, a package manager such as Debian’s dpkg, will i.a. go through
that dependency list, compare it to its list of already installed software and install
anything from the list of 43,000 packages?|supported by Debian that is needed but
missing. This dependency resolution is often a nontrivial task, since dependency
relations can be e.g. conflicting, circular, or even both [43]. In addition, Debian pack-
ages can specify their dependency relations in a finely tuned way with control fields
like Pre-Depends, Suggests, and Enhances, instead of just Dependswhich adds
another layer of complexity.

This process of installing packages is analogous to building software from source
code to executable artefacts, which is why build automation utilities like make and
Gradle are needed to reduce effort and time spent on a build. They are often a
cornerstone of continuous integration and delivery workflows [19].

Continuous Integration is a “practice where members of a team integrate their work
frequently” instead of merging large change sets after long periods of time [19]. To
complement and secure this practice, tests and builds are automated using CI tools
like CruiseContro and]enkins@ They can be triggered by any custom event, such
as a push to an integrated version control system, a periodical script, or finished
builds of other packages within an architecture.

24http://ianmurdock.debian.net/index.htm1%3Fp=437.html
(visited on 2016-06-30).
https://www.debian.org/intro/about (visited on 2016-06-30).
26h’ctps://www.deb'ian.org/doc/deb‘ian—pol‘icy/c:h—relat‘ionsh‘ips.html
(visited on 2016-06-30).
27http://cruisecontrol.sourceforge.net (visited on 2016-06-30).
2https://jenkins.io (visited on 2016-06-30).

82

http://ianmurdock.debian.net/index.html%3Fp=437.html
https://www.debian.org/intro/about
https://www.debian.org/doc/debian-policy/ch-relationships.html
http://cruisecontrol.sourceforge.net
https://jenkins.io

4.8 Future Work

Jenkins users can create post-build actions through which they can create build se-
quences comparable to the ones in our solution [18], except they have the additional
possibility to set actions that depend on the build’s outcome. The Build Pipeline Plu-
gin and the Downstream Buildview Plugin|can be used to organize build pipelines
along dependency graphs and to get a visual overview of their structure and out-
comes [28].

The build automation tools used by the CI tools can handle dependencies and
integrate them into the testing process which is an important part of our solution.
However, they cannot be made part of the build pipeline, meaning that the build
triggers are limited to the context of the CI tool setup. Furthermore, most CI tools
are constrained to only one or a few programming languages and operating sys-
tems, making it difficult, if not impossible, to create complete build pipelines for
architectures in which modules are written in different languagesp’|

These shortcomings are the focus of our solution. To resolve them, it combines
the dependency management of CI tools like Jenkins with Travis CI’s possibility
to test on a big range of technologies and its large community of interdependent
software packages. The hosted CI service Shippable already supports build pipelines,
but constrained to the user’s repositoriesP’| Hosted CI services are a relatively new
phenomenon, and their feature lists are still growing rapidly. It is thus likely that
build pipelines will eventually become a common feature for them, but as of now
they are not.

4.8 Future Work

Software dependencies are a large and complex problem field [45] which has to be
tackled on many different levels in all kinds of contexts, since there will probably
never be a one size fits all solution. Our proposed feature addition is thus by no means
the last word on the subject of unstable dependencies and leaves room for extensions
and optimisations.

Jenkins gives its users the ability to specify whether to build a dependant based
on the outcome of the dependency’s build. This would mark a desirable feature
addition to our solution.

Another improvement would be to allow the specification of branches for the
dependencies, since our solution only supports the default branch. It could especially
be useful within organizations when working on different production stages which
are all represented by a corresponding branch. Then each stage could have its own
dependency graph and its own setup scripts.

29https://wiki.jenkins-ci.org/display/JENKINS/Downstream+buildview+
plugin| (visited on 2016-06-30).

3°A comparison of different CI tools can be viewed at https://en.wikipedia.org/wiki/
Comparison_of_continuous_integration_software (visited on 2016-06-30).

3'http://docs.shippable.com/pipelines_configure/ (visited on 2016-06-30).

83

https://wiki.jenkins-ci.org/display/JENKINS/Downstream+buildview+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Downstream+buildview+plugin
https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
http://docs.shippable.com/pipelines_configure/

4 Dependency Management for Hosted Continuous Integration Services

Travis could also start analysing the repositories” explicit dependency declarations
by actually parsing the code (e.g. the Gemfile for Ruby projects), see whether some
of them are also on GitHub and tested on Travis, and then prompt the user asking
whether they also want to add these dependencies.

Furthermore, when the overview page discussed in chapter|s|is added to the Travis
CI website, the number, status efc. of the repository’s dependencies and dependants
could be added.

When specifying and designing the minute details of the setup script creation for
Travis Build, it would probably be helpful to study Maven’s transitive dependencies
feature which automatically detects dependencies of dependencies etc. and installs
them appropriatelyf?]

Since the setup script for each new dependant equals the one of its dependency
with only some other script concatenated to the end, an optimisation could be added
to the build sequence design, because this means that in case a setup script fails, the
whole build will fail, and all consequent builds in the sequence will do so too. If it
were possible to find out that the build has failed because of the setup script, the
rest of the build sequence could be added to the database with a failed state without
actually running any of the other builds.

And of course, the proposed feature still needs to be implemented.

4.9 Conclusion

In this chapter we have proposed and discussed our design of an additional feature
for the hosted continuous integration service Travis CI that would extend it with de-
pendent builds for both explicit and implicit dependencies. Our solution would help
users solve the problem of unstable dependencies and generate a workflow to iden-
tify issues within a modular architecture and with external dependencies. We have
discussed the ways of testing the different types of dependencies, introduced build
sequences, and ways of presenting the generated information, including our newly
proposed status badges. Implementation details were presented and the trade-off
between complexity and usefulness was evaluated. We gave an overview of tech-
nologies in the domain of dependency management, continuous integration, as well
as their intersection, and gave an outlook on potential future work on our solution.

If dependent builds were to become part of the list of features accessible to every
open source project using Travis for free, the open source community could poten-
tially benefit greatly. They would stay in control of their internal as well as external
dependencies and might get encouraged to depend on bleeding edge software more
often.

32https://maven.apache.org/guides/introduction/introduction-to-
dependency%2Dmechanism.html (visited on 2016-06-27).

84

https://maven.apache.org/guides/introduction/introduction-to-dependency%2Dmechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency%2Dmechanism.html

5 Visualizing Build Data in Continuous
Integration Services

Travis is a continuous integration service that runs tests and collects their data. For devel-
opers it is hard to get the big picture from this collected raw data. We analyze which data is
useful to collect and display in graphical form to provide developers helpful insights into the
state of their repositories. We develop an overview page which contains statistics like build
duration over time as well as the recent build history and implement it into Travis’ website.
With this overview development teams can get valuable metrics of their repositories.

5.1 Introduction

Continuous integration is a common practice where code changes are tested, merged,
and deployed several times a day. Hosted continuous integration services like Travis
provide testing and deployment in the cloud. While running the tests, these services
collect data such as their status and duration about builds.

The Travis website spreads this data over different pages, therefore it is hard to see
the big picture. With a comparison of the build duration over time developers can
notice if their software performance decreases. But without overview it is difficult
for the developers to retrieve any such valuable information from the build data.

In this chapter we are going to analyze what data is useful to collect in the build
process to give development teams insights which can lead to better software. We
focus on build meta data from Travis and do not connect them with data from dif-
ferent sources. Furthermore we look at different visualizations of the build data. This
includes revealing problems of external services which already offer visualization
for repositories on Travis.

We develop a new overview page for repositories containing diagrams and statis-
tics. These representations include a diagram with build duration over time, the
recent build history, and the number of days since the last failed build.

5.2 State of the Art

The Travis website has no specific focus on visualization. Instead it is built for easy
and fast retrieval of information about the latest builds. Therefore, based on the
Travis API, independent developers programmed other tools for visualization. In
this chapter we are going to have a look at relevant parts of the Travis website as

85

5 Visualizing Build Data in Continuous Integration Services

well as some tools developed by third parties. As it is necessary to know the data
before trying to visualize them we are going to start out by giving an overview.

5.2.1 Build Data

Travis collects the following data for each build:

Status The status the build is in. This can be success, errored, failed, can-
celled, or a status which indicates that the build is not finished yet, like
running or booting.

Type The Event which caused the build. This indicates whether a build was caused
by a git push (push), an opened pull request (pull_request), API call (api),
or cron job (cron).

Start time Timestamp of the start of the build.
End time Timestamp of the end of the build.

Elapsed time On Travis a build can consist of multiple jobs. In this case, Travis can
execute more than one job at the same time. The time from the start of the first
until the end of the last job is the elapsed time.

Total time The sum of the duration of all jobs. If the build has only one job this is
equal to the elapsed time.

Travis adds the following information for each build:

Number This number is counted per repository. It is incremented for each build in
this repository.

ID The ID is unique for all builds in a Travis instanc It identifies a build without
needing to know the repository.

Each test on Travis does a checkout of a git commit. Travis uses the following data
from this commit:

Branch The branch the commit is on. In case of a pull_request build this is the
branch the commits should be merged into.

Author The person who wrote the code changes. If existing, the Gravata of this
person is shown next to the name.

Committer The person who committed the code changes. If existing, the Gravatar
of this person is shown next to the name.

'Currently the .org and .com services from Travis are two separate instances.
?A Gravatar is a unified profile image which is used on different websites, see
http://en.gravatar.com (visited on 2016-07-06).

86

http://en.gravatar.com

5.2 State of the Art

Commit message The message of the commit. For pull_request builds the title
of the pull request is used instead.

Commit hash The unique hash of the git commit. For pull_requestbuilds a merge
commit is created.

5.2.2 Travis Website

To structure the information about a repository on the Travis website it is divided into
different pages. These pages are displayed as the following tabs: Current, Branches,

Build History,and Pull Requests (see|Figure 5.1).

fsr-itse / EvaP © cme=a

(:I-..u rent Branches Build History Pull Reql_.estc)

Figure 5.1: Navigation for a repository on Travis

Current

When opening a repository on Travis, for example by clicking on a Travis badgep|the
Current tab is shown. This page displays the last build of this repository as shown
in[Figure 5.2} The information displayed on a page with a single build above the log
is explained later.

Branches

On the tab Branches is a branch row (1) for each branch shown (see [Figure 5.3).
On the left side of this row the status of the last build is indicated by a color (2) and
an icon (3). Next to this are the branch (4) and number of builds on this branch (5).
For the last build the type as icon, number, and status (6), finished date (7), commit
hash with link to GitHub (8), and committer (9) are additionally shown. On the right
side of the row the status of the last 5 builds is shown, with (10) being the last build.
When hovering over a build status, the website reveals the build number for this
build, too.

3Travis badges are small images showing the build status of one selected branch and are
often included in the readme file of a repository.

87

5 Visualizing Build Data in Continuous Integration Services

fsr-itse / EvaP

Current Branches Build History Pull Rex More options

+ master Merge pull request #805 from janno42/fix_802 o- #1695 passed

Elapsed time 2 min 50 sec

about 20 hours ago

Commit afagd0a

& Johannes Wolf authored and committed

Using worker: worker-1inux-do df49d.prod. travis

Build system information

This job is running on container-based infrastructure, which does not allow use of “sudo’, setuid and setguid executables.
If you require sudo, add 'sudo: required’ to your _travis.yml
See https://docs._travis- com/user/workers/container-based-infrastructure/ for details.

Setting
$ python -

pip 6.0.7 from
$ npm install -g les
$ pip install -r requirements.txt

$ pip install
$ contributor evap udent evap.grades evap.rewards Luation. tests stDataTest. Loa

ng test database for alias ‘default

The command “coverage run manage.py test evap.evaluation evap.staff evap.contributor evap.results evap.student evap.grades evap.rewards
evap.evaluation._tests.test_misc.TestDataTest.load_test_data” exited with @.

e build
ralls

Figure 5.2: Current tab, which is the default view of a repository on Travis

hpi-swa / smalltalkCl

Current Branches Build History Pull Requests Mare options

8 (U s5fd4crs)
— 10@J VA
5 7 (CEdesage) 9 (@rFabio Niephaus)

v dev cdfa4ba
v X
179 builds 6 days ago ﬁ bio Niephaus
X issuef -0~ #398 failed 203e27d
o X
1 builds 2 months ago @ rabio Niephaus

Figure 5.3: Overview of the last 5 builds of each branch on the Branches tab

88

5.2 State of the Art

Build History

The Build History tab displays a list of all but pull_request builds ordered by
the creationff|as shown in[Figure 5.4} For each build the status (1, 2) and branch (3) are
shown like in a branch row. Next to this the author (4) is displayed. Additionally to
the data shown on the Branches tab the commit message is displayed in the center
(5). On the right side the build type as icon, number, and status (6), commit hash
with link to GitHub (7), total build time (8), and finished date (9) are shown.

hpi-swa / smalltalkCl

Current Branches Build History Pull Requests More options

@2 3

@ustom STON can be a relative path; fixes 2147) < 8
€ Fabio Niephaus) 4 5 5fd4c7s 7 9
~/ master Improve compatibility to GemStone #144 O~ #499 passed 33 min 32 sec
& rabio Niephaus cdfadba 6 days ago

 dev Improve compatibility to GemStone #144 O- #498 passed 32min 21 sec

€ Fabio Niephaus cdfadba 6 days ago

(i Fabio Niephaus 69a8ff9 7 days ago

+/ master Update and improve bash tests #496 passed 29 min 52 sec

I ~/ master Make sure to prefer STON config provided as cmd O~ #497 passed 54 min 15 sec
I @ Fabio Niephaus 6dde96c 11 days ago

Update and improve bash tests 6 sec

(i Fabio Niephaus 6dde96c 11 days ago

Figure 5.4: List of the last builds on the Build History tab

Pull Requests
The tab Pull Requests looks like the Build History tab, but only shows the
pull_request builds, which were excluded from the other one.

Build

On the Current tab, or when selecting a build on one of the other tabs, Travis’
website shows a page for a single build. On the top of this page there is a box where
all information for this build is displayed, see This build header offers
information which is also displayed on the other tabs like status (1, 2), branch (3),
commit message (4), commit hash with link to GitHub (5) but also new elements like
the commit hash of the commit before with a link to GitHub to compare the changes
between the last two commits (6). Instead of just the committer or the author both are
shown (7). On the right side the known build type, number, and status combination

4For more information on how a build is created see chapter

89

5 Visualizing Build Data in Continuous Integration Services

(8) is displayed. For builds with more than one job the header contains the elapsed
time (9) in addition to the total time (10). The last element is the time the build was
finished (11). For jobs without a matrix the site furthermore displays the build log

below this box (as already shown in[Figure 5.2).

hpi-swa / smalltalkCl

Current Branches Build History Pull Reguests Build #500 More options
2 3 4
(master) {Custom STON can be a relative path: fixes #147)

Commit 5fd4c78) 5 (% Elapsed time 12 min 45 sec) 9
Compare cdfa4ba..5fd4c78) 6 (Y Total time 27 min 48 sec) 10

(€ _rabio Niephaus authored and committed) 7 11
1

Figure 5.5: Header of a build with multiple jobs

5.2.3 External Services

Build Duration
Silviu-Cristian Burci has built a toolP] to visualize the duration of the last builds

because “the regular Travis CI interface wasn’t very conclusive” [10]. After entering
the GitHub slug, the websiteﬁ of the tool, shown in generates two bar
charts for the build duration; one for the total time (called duration in the tool) and
another for the elapsed time (called wall time). A third bar chart shows the number
of builds for all days with builds.

Buildtime Trend

Dieter Adriaenssens has built the tool Buildtime Trendf] “to create charts to visualise
trends of the build process.” [1]. It offers statistics about builds in a selected time
period like days since last fail, build duration by build matrix parameter, and build

time per day of weekiﬂ

5The source code is available on GitHub: https://github.com/scribu/travis-stats
(visited on 2016-06-07).

Shttp://scribu.github.io/travis-stats/ (visited on 2016-06-07).

7The source code is available on GitHub: https://github.com/buildtimetrend/
(visited on 2016-06-07).

8 A full list is available at Buildtime Trend as a Service, see https://buildtimetrend.
herokuapp.com| (visited on 2016-06-07).

90

https://github.com/scribu/travis-stats
http://scribu.github.io/travis-stats/
https://github.com/buildtimetrend/
https://buildtimetrend.herokuapp.com
https://buildtimetrend.herokuapp.com

5.3 Problem

Repository: | hpi-swa/smalltalkCI |

Build durations (in minutes) Build wall times (in minutes)
duration = sum of job run times wall time = finished_at - started_at

0 10 20 30 40 350 60 70 80 90 100 110 0 5 10 15 20 25 30

Figure 5.6: Screenshot of the tool to visualize build durations of builds on Travis

Travalizit

Travalizitﬂ is a tool to analyze build data developed by Stefan Judis as part of his
bachelor’s thesis. It offers the user a customizable dashboard with different diagrams.
The possible diagrams include a build duration diagram like the one mentioned
above but also diagrams which for example use a connection with data from GitHub
to link changed files or the amount of lines edited to the build status [29].

5.3 Problem

In this chapter we are going to examine the insufficient presentation of the data on the
Travis website and the shortcomings of external tools introduced insubsection 5.2.3|

5.3.1 Travis Website

On the different pages on the Travis website various attributes of the builds are listed,
but only on the build page all available data is displayed. To compare data which is
only displayed on this page, for example the elapsed time, it would be necessary to
open the pages of all builds to compare.

Even if one wanted to compare data shown on one site problems would arise. On
the Branches tab only the status of all displayed builds is shown, so the user cannot
for example detect outliers in any other data set. The Build History tab displays
more data, but here the builds are not grouped by the branch or event type. For
example, to look over the course of time of the build duration it is not appropriate
to use builds from different branches or event types because the test configuration
or the matrix can be different.

Furthermore, for people it is much easier to interpret graphics instead of raw data,
especially if this is spread over different sites [40, p. 5].

9The source code is available on GitHub: https://github.com/stefanjudis/
travalizit-app (visited on 2016-06-13).

91

https://github.com/stefanjudis/travalizit-app
https://github.com/stefanjudis/travalizit-app

5 Visualizing Build Data in Continuous Integration Services

After a developer has pushed their code to GitHub during development they often
want to check the status of the last build. Currently one can sometimes achieve this
via the Current tab. The problem is that the last build does not necessarily belong
to this developer. Especially when working with in a large team at the same time
it often happens that the Current tab shows a build from another developer who
pushed more recently.

5.3.2 External Services

External services for visualizing the Travis build have general issues that are not tied
to a specific service.

External tools always have the problem of accessibility. First, developers have to
look for them and second they need to use different services to access all important
visualizations. Third, the communication with Travis through the API is not optimal.
Data which need aggregations and calculations cannot be collected optimized in
the database — instead all data needs to be loaded via the Travis API and then be
processed by the tool. Additionally maintenance of these tools is not guaranteed. If
Travis changes the API and tools break it is neither clear when nor if third parties
will fix their toold™]

The build duration tool introduced in for example loads about the
last 500 builds incrementally via the Travis API [10]. The Travalizit tool does not exist
as hosted service, but only as source code. Therefore one has a high barrier to use it,
because a possible user has to host it on their own.

5.4 Approach

In this section we are going to present our concept that aims to solve the different
problems identified insection 5.3] To avoid the general problems of external services
(see jsubsection 5.3.2) we do not build another external tool but instead introduce
some changes to the Travis website itself.

The approach is divided into two sections. The first suggests an overview page
for the Travis website and the second a way to collect more data form running tests.
The implementations of the overview page is presented in[section 5.5\ while for the
second part only the approach is described and no implementation shown.

5.4.1 Overview Page
We propose to replace the Current tab, which leads to the last build page, with

a new overview tab. It could look like the mockup in This tab should
not be an statistics page, instead we want to build a page, that is the start page if

1°To detect this, the maintainers can use periodic tests as introduced in chapter[g|or automatic
testing after changes in dependencies as introduced in chapter

92

5.4 Approach

one Visits a repository on Travis. Therefore we only want to show selected diagrams
and numbers which are understandable at first glance and offer developers helpful
insights into their testing and CI usage. To accomplish this we for example focus
some diagrams on the default branch even if we can display them separately for each
branch. We do not want to show diagrams with data where one cannot interpret
anything useful. Hereinafter we explain for each selected statistic why developers
benefit from it.

A Web Page

<:| |3 X {} (https/) @

Organisation / Repository

QOverview Branches Build History Pull Reguests l

A builds

R w0l

today yesterday sSeeeted Sieeted Sggesd sAjgibe slggetad sljgabe

Builds currently running

Im R o ml

Bttt o SN SEA0 et o
16 68
Days passing Builds during these days

Build Duration

#50 48 p44 %A 4 4 4 24 build number ||

4

Figure 5.7: Mockup of the new overview page

93

5 Visualizing Build Data in Continuous Integration Services

Build History

This chart shows all finished builds of the last ten days on all branches with their
status. An example is shown in the first diagram of The diagram depicts
the quantity and quality of work in the last days.

By removing the Current tab we avoid leading developers to a build that was not
triggered by them. To still have the possibility to navigate to recent builds, we list
and link the currently queued and running builds which are not part of the diagram
below. With this approach the developer can navigate to their build even if it is not
the latest.

Streak

The streak of a repository is the number of days since when builds on the default
branch were neither errored, failed nor canceled. If a developer works on a
repository and then takes a longer pause this streak will keep growing; therefore we
additionally show the numbers of builds in these days. For example if a repository
is passing for 200 days but only has seven builds in this timespan one knows it was
not actively developed during this time. To reflect the number of builds correctly we
only count push builds. We do not count pull_request builds because not only
the main developers can open pull requests and we do not count cron builds so that
a daily cron job for example does not increase the build count every day.

If a development team is testing all pull requests, the default branch should not be
broken. So the streak shows if testing techniques are consistently applied. This can
increase the trust in open source software projects without failure for a long time
while being under active development.

Build Duration

This diagram shows the total time of the last builds with the aid of a bar chart as
illustrated by the example in the last diagram in It lets developers notice
that the builds have become slower since a certain version. In our example the build
has gotten slower since build #44. This can indicate code changes which decreased
the performance of the software, leading maintainer to go through the code changes
which happened to the first slow build, find the relevant part of the code, and fix it.

In this diagram we focus on one branch because a comparison of more than one
branch for example can be misleading due to different build configurations. We
chose the default branch because developers are usually not interested in foreign
development branches.

The color of the bars represents the status of the build, red indicating a fail and
green a pass. This is important because builds can fail early and stop without running
all tests. We show only these two types because the user can cancel builds at any
time, leading to a shorter build duration. So showing canceled builds is misleading
in the diagram and running builds do not have a duration yet.

94

5.4 Approach

5.4.2 JUnit XML

As shown in|subsection 5.2.1| Travis has data about each build, but data about indi-
vidual tests are not included. However information like the duration of a single test
over time or whether failed builds are always caused by the same test can be valuable
for developers. We therefore want to add such data to Travis by using Junit XML
output.

Listing 5.1: Schematic description of the JUunit XML format, based on [11]

<testsuites> => the aggregated result of all junit test files
<testsuite => the output from a single TestSuite
name="” => name of the test suite
errors="” => number of test cases errored
tests="” => number of test cases
failures="” => number of test cases failed
time="” => time to execute all test cases in this suite
>
<properties> => the defined properties at test execution
<property => name/value pair for a single property
name:” ”»
value="”
/>
</properties>
<testcase => the results from executing a test method
classname="” => name of class containing the test
name="” => name of the test
time="” => time it took to run the test case

<system-out> => data written to System.out during the test run
<system-err> => data written to System.err during the test run

<skipped/> => test was skipped
<failure> => test failed
<error> => test encountered an error
</testcase>
</testsuite>

</testsuites>

JUnit XML
The JUnit XML file format["|is a format for saving information about individual
tests. It is shown schematically in The format was originally developed

"There are slightly different definitions; for this chapter we are only using the definition
published in [26] which is the version used in Apache Ant 1.8.2.

95

5 Visualizing Build Data in Continuous Integration Services

for Apache Ant, a Java build tool. Hence it has some Java specifics like the package
attribute.
Today JUnit XML is widely used. There are tools to covert output from different

languages like Ruby}?| Python['3|and Go[¥]

Integration into Travis

Since Travis supports 25 different languages [47] and users can also use it to execute
bash scripts [46], it is complicated to integrate Junit XML output for every build.
It should thus be optional. In a separate build step the XML should be written to
a specific location. To support this for all languages Travis needs to include this in
each language specific build script. If users want to use this feature with a custom
script they can output the XML.

* X %

The overview page allows developers to get insights into their repositories as soon
as they open Travis, for example via a badge on GitHub. On this page they can
for example immediately see if the builds of their project have gotten slower and
navigate quickly to currently running builds.

5.5 Implementation

Travis uses many microservices. In order to implement the overview page we need
to change the AP and the Web service. The API is written in Ruby and offers a
RESTful interface of requesting all data Travis collects. The Web service in written
in Ember.js, a framework based on node. js. The website requests all shown data
from the API (chapter 2).

This chapter is divided into an API and a Web section, both containing a part for
each introduced diagram.

5.5.1 API

We want to display all statistics on the start page of a repository and therefore users
will request them often. The endpoints provided by Travis v3 API[7| are not spe-
cific for our suggested overview page. For example to get the streak, one needs to
request builds until the first failed, errored, or canceled is found. This is not
performant so we decided to add one API endpoint per statistic which returns a

2https://github.com/sj26/rspec_junit_formatter (visited on 2016-06-10).
Bhttps://github.com/kyrus/python-junit-xml| (visited on 2016-06-10).
“https://github.com/jstemmer/go-junit-report (visited on 2016-06-10).
5see https://github.com/travis-ci/travis-api (visited on 2016-07-06).
6see https: //github.com/travis-ci/travis-web (visited on 2016-07-06).
7seehttps://api.travis-ci.org/v3/ (visited on 2016-05-24).

96

https://github.com/sj26/rspec_junit_formatter
https://github.com/kyrus/python-junit-xml
https://github.com/jstemmer/go-junit-report
https://github.com/travis-ci/travis-api
https://github.com/travis-ci/travis-web
https://api.travis-ci.org/v3/

5.5 Implementation

JSON containing exactly the data needed. With this approach we can do as much
calculation as possible within the database which leads to reduced communication
and computing effort. All endpoints will look like https://api.travis-ci.org/
v3/repo/{ID|Slug}/overview/{endpoint} and can be queried with the HTTP
method GET. {ID|Slug} is either replaced by the repository ID from Travis or the
GitHub slugl?_gl

In the following we are going to show and explain the needed Active Record[™)|
statements to get the data from the database and define the JSON format returned
from each endpoint.

Build History

The endpoint build_history returns a ISON as shown in Lines 2—4
are meta data which is included in the result of every API call, but not relevant
for us. In the recent_build_history key (line 5) exists a key for each day of the
last ten with at least one build (in this example the keys 2016-05-26, 2016-05-25,
and 2016-05-24). Each of these date keys has a key for each build result (passed,
failed, and errored). This key contains the number of builds which ended in this
result on this day. Keys with a count of zero are left out to reduce the amount of data
transferred.

Listing 5.2: JSON returned from the build history overview endpoint

P’@type”: ”overview”,
?@href”: ”/v3/repo/43487/overview/build_history”,
?@representation”: ”standard”,
?recent_build_history”: {
”2016-05-26": {
”passed”: 1
1,
”2016-05-25": {
Ppassed”: 1
1,
”2016-05-247: {
”passed”: 1

s
The Active Record statement for this is shown in In line 3| the builds

of the default branch in the correct repository are selected and in the next line the

8The GitHub slug consists of the user or organisation name, followed by a / and the name
of the repository.
Y Object Relational Mapping system used in the Travis APL

97

5 Visualizing Build Data in Continuous Integration Services

Listing 5.3: Active Record code for the build history endpoint in 1ib/travis/api/
v3/queries/overview.rb

def recent_build_history(repo)
Models: :Build
.where(:repository_id => repo.id, :branch => repo.default_branch_name)
.where(”finished > ?”, Date.today - 9)
.group(”date_trunc(’day’, finished)”, :state)
.count
end

data range is limited to 10 days (today and the last 9 days). After this all builds are
grouped by the state and day which the database extracts from the finished_at
timestamp. We use the finished_at date to exclude builds which are not finished
yet and have finished_at set to NULL. In line [we only request the count for this,
so for each date and state we get a number, just as returned in the JSON.

Streak

The JSON returned by the streak endpoint contains the number of the days and the

number of builds since when the last build on the default branch was broken, see
isting 5.4

Listing 5.4: ISON returned from the streak endpoint

{
Y@type”: “overview”,
?@href”: ”/v3/repo/39682/overview/streak”,
Y@representation”: ”standard”,
"streak”: {
’days”: 46,
Ybuilds”: 2
}
}

The Active Record code shown in[Listing 5.5/generates this JSON response. The first
[o|lines show a subquery which requests the ID of the most recent failed, errored,
or canceled build on the default branch. In line 10 this query is surrounded with a
COALESCE which replaces a NULL with a @ in order to allow the selection in line
even if no build in this repository has ever resulted in one of the listed statuses.

The next query requests the count (line [11) and date of the first build (line12]) of
all passed (line 16) and relevant (line f14] and [15) builds which were created after
the last not successful one queried above (line[18). These builds are requested and
grouped by the event_type in line

98

5.5 Implementation

Listing 5.5: Active Record code for the streak endpoint in lib/travis/api/
v3/queries/overview.rb

def streak(repo)
subquery = Models: :Build
.where(:repository_id => repo.id,
:branch => repo.default_branch_name,
:state => [’failed’, ’canceled’, ’errored’],
:event_type => [’push’, ’cron’])
.order (”id DESC”)
.select(:1d)
LAmit (1)
subquery = ”SELECT COALESCE((” + subquery.to_sql + ”), 0)”
Models: :Build.select(’COUNT(*) AS ”count”,
MIN(created_at) AS ”created_at”,
Yevent_type”’)
.where(:repository_id => repo.id,
:branch => repo.default_branch_name,
:state => ’passed’,
:event_type => [’push’, ’cron’])
.where(”id > (#{subquery})”)
.group (:event_type)
.to_a
end

The streak_overview function of the repository model calls this streak func-
tion (line 2 in[Listing 5.6). The loop in line 7 iterates over each grouped build_type.
To determine the start of the streak the earliest build with success regardless of the
type is chosen, see line 8. In the next line the count for the streak is set, but this time
only if the type is push.

Build Duration

The JSON with the data for the build duration diagram can be requested from the
endpoint build_history. is an example of a JSON returned. In line 5,
one can see that the key to access all data for this endpoint is build_duration. This
key holds an array with the minimal representations™| of the last 20 builds. This
representation includes the number as well as the start and end time.

To return this result we need to get the last 20 builds from the database. This can
be accomplished with Active Record as shown in|Listing 5.8] Line 2 filters the correct
builds. In line 3 are two selections, the first one filters builds without duration which
are any builds waiting to be finished. The second filter rejects canceled builds. At
the end the first 20 builds are returned descending in their creation time (line 4).

*°The Travis API v3 has a minimal and standard representation for returning most of the
queryable models. The minimal representation does not always include all attributes and
does not expand liked entries. We use the minimal representation because all needed
data is included there.

99

5 Visualizing Build Data in Continuous Integration Services

Listing 5.6: Code of the model for the streak endpoint in lib/travis/api/
v3/models/repository.rb

def streak_overview
result = overview_query.streak(self)

start_of_streak = DateTime::Infinity.new
build_count = 0

result.each do |builds|
start_of_streak = builds.created_at if builds.created_at < start_of_streak
build_count = builds.count.to_i if builds.event_type == ”push”

end

day_count =
(build_count > 0) ? ((Time.now - start_of_streak) / (60x60%x24)).floor : O

Models::Overview: :Streak.new({days: day_count, builds: build_count})
end

Listing 5.7: JSON returned from the build duration overview endpoint

{
P@type”: ”overview”,
?@href”: ”/v3/repo/39682/overview/build_duration”,
”@representation”: ”standard”,
?build_duration”: [
{
”@type”: ”build”,
?@href”: ”/v3/build/493035”,
P@representation”: ”minimal”,
”id”: 493035,
Ynumber”: ”46”,
?state”: ”passed”,
?duration”: 164,
Yevent_type”: ”cron”,
”previous_state”: ”passed”,
Pstarted_at”: ”2016-04-28T13:46:40Z2”,
?finished_at”: ”2016-04-28T13:48:012”
I
1
}

Listing 5.8: Active Record code for the build duration endpoint in 1ib/travis/
api/v3/queries/overview.rb

def build_duration(repo)
Models: :Build.where(:repository_id => repo.id, :branch => repo.default_branch_name)
.where(”duration IS NOT NULL”).where(”state != ’canceled’”)
.order (”id DESC”).first(20)

end

100

5.5 Implementation

5.5.2 Web

On the overview page the website sends requests to the Travis API to receive the
JSON results described in [subsection 5.5.1 An example of requesting the data for
the build_duration is shown in The data is requested asynchronously
(line 10), while the request is running, a loading indicator symbol is shown (lines 3
and 13). This procedure is used for all statistics we display on the overview page.

The diagrams we display are drawn by D3.js[|a JavaScript library for visu-
alization. Since it is arbitrary and not relevant we are not explaining how exactly
we use D3.js. We chose D3. js because it is flexible, runs completely in the clients’
browser, and is open source.

Before we are going into the details of each statistic one can see a prototype of
the whole new overview page in [Figure 5.8 In addition to the statistics described
before, we show the branch row of the default branch (3) — the same element used
for every branch on the Branches tab. Because the streak just displays two numbers,
the number of days passing (4) and the amount of builds during these days (5), we
are not explaining any details.

Listing 5.9: Example of loading the data from the Travis API in the ember.js code of
the Travis website

load: function() {
// set flag to show loading indicator instead of drawing the chart
this.set(”isLoading”, true);

// remove old chart, in case of rerendering
d3.select(”#build_duration_chart”).remove();

$.ajax(apiEndpoint + ”/v3/repo/” + repold + ”/overview/build_duration”, options)
.then(function(response) {

self.set(”json”, response);

self.set(”isLoading”, false);

1)

return 77
}.property(”repo”),

Build History

The build history chart is shown as first element on the new overview page ((1) in
[Figure 5.8). When hovering over one bar the site opens a popup which shows the
number of builds of each status on this day.

*1Data-Driven Documents, see|https://d3js.org (visited on 2016-06-27).

101

https://d3js.org

HPI-BP2015H / travis.rb

Overview Branches

5 Visualizing Build Data in Continuous Integration Services

build |passing

Build History Pull Requests

More options

~

(Cuilds

5

4

34

14

0- | I T T T T I T T
_ May 17 May 16 May 15 lay 14 May 12 May 11 May 10 May 09 May08 J
Default Brancl 3

' master #73 25748bb
v v
3 builds about 20 hours ago Q Steffen Kotte
Build Build Minute:
in the last 30 days in the last 30 days

(Guration /s)

40

30

20+

10+

[-t % Y1 ™ U Y * ™~— & V"V 11— ¥V v 1T 1rr— 10— 1T
k 73 T2 71 70 69 68 i 66 65 64 63 62 61 60 59 58 57 56 54 53 bUHdSJ

Figure 5.8: Prototype of the new overview page

102

5.6 Evaluation

Beneath the chart is the count of the builds which are queued or running at the
moment (2) displayed. If there are any such builds a list with information about
these builds as shown in[Figure 5.9|is visible below the counter.

Each entry of this list contains an icon to indicate the build type, the number,
and state along with a link to the build (1), the already elapsed time (2), branch (3),
commit hash with link to GitHub (4), author with Gravatar (5), and the commit
message (6). The author combined with the picture offers easy navigation to builds
in which the developer is interested in.

1 2 3 4 5 6
:) C) (nastea (3fSlSUa) (' Hiro Ag,;.,rD Gdtl @ before ccnrig)
15 sec master 5003704 ' Hiro Asari improved specs

Figure 5.9: Mockup of the list with queued and running builds on the new overview
page

Build Duration

The diagram with the build duration is the last element on the overview page ((6)
in[Figure 5.8). When hovering over one bar a popup with the exact duration of the
build is opened. Clicking on one bar opens the site of the corresponding build.

5.6 Evaluation

With our solution introducing the overview page we aimed to solve different issues.
First to avoid confusing when the Current tab on the Travis website leads a devel-
oper to a build they did not start and second to give developers helpful insights
about there project while avoiding the problems of external services.

Avoid Confusion

With removing the Current tab completely, developers cannot be lead to an unin-
tended build anymore. By adding the list of currently running builds the functional-
ity is still given and only one click more.

Helpful Insights

Our goal was to offer helpful insights and not to show random statistics. As devel-
opers have already built the Buildtime Trend tool, which shows diagrams like our
build duration diagram, this diagram has additional value for developers. As the
current tab was used before we expect that the list of currently running build is
helpful and will be used, too. With all diagrams we tried to stick to the properties of
good visualization listed in [38), p. 4].

103

5 Visualizing Build Data in Continuous Integration Services

Avoid Problems of External Services

With integrating our changes directly into the Travis website we wanted to prevent
the problems that external services face (see|subsection 5.3.2)). With the overview tab
as start page for a repository developers should neither have a problem finding the
statistics nor the need to use different tools. As shown insubsection 5.5.1the data
for our statistics is aggregated in the database so the performance of the overview
page is better than that of external services.

Limitations

While discussing this work with several people which use Travis for projects at least
on a weekly base, two problems were discovered. First people said that they only
use the Travis website if a pull request check is failed to check the reason of the
failure. Second, the time axis of the build duration as well as the recent build history
diagrams are reversed in comparison with normal time axis.

The axis shows the newest build or date on the left side to be consistent with the
already existing elements on the Travis website. In a branch row ((1) in[Figure 5.3)
the status of the latest build (10) is also displayed on the left side. For developers
familiar with the Travis website this might not be a problem but for the one using
Travis like mentioned above this is a problem. In order to fix it one needs to change
the layout of the branch row. At first it will be confusing to current users, but in the
end all diagrams might be easier to understand.

5.7 Related Work

In this section we are presenting how other CI services display their data as well
as different ideas on how to show the data generated during development with
continuous integration.

5.7.1 CI Tools

Most CI tools already have some sort of data visualization. In the following para-
graphs we will introduce some examples of visualization in other CI services.

GitLab CI
GitLab offers an integrated CI service called GitLab CIP?|It offers a continuous inte-
gration graph page with graphs similar to our build history for the last week, month,
and year. On the top of the page the statistics shown in[Figure 5.10|are additionally
displayed.

22https://about.gitlab.com/gitlab-ci/ (visited on 2016-06-28).

104

https://about.gitlab.com/gitlab-ci/

5.7 Related Work

Overall stats Commit duration in minutes for last 30 commits
* Total: 2208 builds
* Successful: 1920 builds
* Failed: 275 builds
® Success ratio: 87% 1
* Commits covered: 736

2

a
- Feie) 0 @ oD popEEDLDD oo SO0
PSSP S S 358888322322 F3
LI A N R R R R EE: o
§EC 8838883855885 8288¢0c8888s8
& 5 CEE "8 8L S8 F 35 © o g Hg o EN 558

Figure 5.10: Screenshot from the continuous integration graph page in GitLab

CircleCI
CircleCIP3)is a CI service similar to Travis. It also displays the build duration and a

build history shown in[Figure 5.11} It supports JUnit XML to collect metadata from
tests [13]].

Build Status
Queue time

M Fassed W Faded W Canceled

III|II||||I|III|I|II|II"II.|||Il||||||l||||||||||I|Il|||l||||||||.|II|I|III|||||||II|III|||I||II|I||||||.|||||||||||||

Build Performance

Figure 5.11: CircleCI Insights from

23https://circleci.com (visited on 2016-06-28).

105

https://circleci.com

5 Visualizing Build Data in Continuous Integration Services

TeamCity

TeamCity[4| offers integrated visualization as well as an easy integration to add own
charts [42]]. It supports data like code duplications, different code coverages, and
code inspection errors.

Jenkins
Jenkins[>|aggregates the test results and build status of the last builds into a weather

report as shown in [Figure 5.12

w Name | Last Success
jenkins 2.0 1 mo 11 days - #4
W Description %
) Build stability: 2 out of the last 4 builds failed. 50
"r@ Test Result: 0 tests failing out of a total of 11,803 tests. 100 8

Figure 5.12: Weather report from Jenkins Core [27]

5.7.2 Linking different data sources

Data about the software is currently spread across different services like GitHub
for issues and CI tools for build statuses. Combining this data can provide a faster
overview about the status of a project [8, p. 193] or present information for all stake-
holders [34} p. 29]. For example the files changed in commits which break builds
might be interesting for further analysis, as developed in [29, pp. 26—28].

5.7.3 Dashboard in Development Rooms
Using physical artifacts like a traffic light to show the last build status in a develop-
ment room is common [37, p. 4]. Presenting more information than the current build

status in a dashboard which is visible the whole time can offer fast insights into the
software [8§].

5.8 Future Work

The overview page developed in this chapter can be further improved. In the follow-
ing we are introducing some ideas for enhancements.

24https://www.jetbrains.com/teamcity/ (visited on 2016-06-29).
5https://jenkins.io (visited on 2016-06-29).

106

https://www.jetbrains.com/teamcity/
https://jenkins.io

5.9 Conclusion

JUnit XML
Travis can collect data from individual tests as suggested injsubsection 5.4.2 With this
information, completely different statistics can improve the benefit of the overview

page.

Duration of Pull Request Builds

Before merging a pull request it might be interesting to see how the build time
has changed. If this is displayed it can prevent merging code which reduces the
performance of the software.

Mobile Website

Our suggested overview page is not yet optimized for mobile devices. If developers
use the Travis website often on their smartphones it would be necessary to adjust
the graphics to the smaller screens.

5.9 Conclusion

In this chapter we discussed the data collected from tests and the presentation of
them on the Travis website. As most data is currently spread over different pages we
have suggested an overview page for each repository shown in

Our suggestions for the overview page are diagrams with the build duration over
time and recent build history, as well as a list of currently running builds and the
amount of days without failing builds together with the amount builds during these
days. We explain the value to the developer of each statistic and show details of the
implementation.

The new overview page enables developers to get the big picture of their reposi-
tories on Travis as soon as they open it, for example via the build status badge on
GitHub. They can directly navigate to all currently running builds and for example
see if the builds of the project have recently gotten slower. With these improvements
we make the Travis website more valuable for developers and allow them to get
insights which they could not easily get before.

107

6 Conclusion

In this report we have described the micro-service architecture of Travis CI. Then we
have shown how Travis CI can be extended to provide means of coping with depen-
dencies, as well as to provide visualisations of useful information about software
projects tested on Travis CI.

With this report we aimed at achieving the following two goals. Firstly, we wanted
to help the people developing Travis CI by giving an comprehensible overview of
Travis CI's complex architecture. This will facilitate the finding of the correct place
for changes when making improvements to Travis CI. Secondly, we wanted to show
extensions to Travis CI we found most useful. Therefore we presented periodic build-
ing and dependency graphs as means of coping with dependencies, as well as an
analyzation of which charts and data are useful for an overview page of a software
project. Periodic building has already become a part of Travis CI, while the other
two extensions could be implemented with the help of this report.

Since Travis CI is mostly open source, not only staff of Travis CI can benefit from
this report. Everyone who wants to make changes to Travis CI can find advice in this
work. Therefore this report is a contribution to the entire open source community.

109

References

[1]

[2]

[6]

[7]

[8]

[13]

D. Adriaenssens. Buildtime Trend. 2015. UrL: https: / /buildtimetrend.
github. ol (visited on 2016-06-08).

Andproid Developer Reference Manual. Scheduling Repeating Alarms. Android
Open Source Project. urL: https://developer.android.com/training/
scheduling/alarms.html (visited on 2016-06-20).

Android Developer Reference Manual. Alarm Manager. Android Open Source
Project. urL: https://developer.android.com/reference/android/
app/AlarmManager . html(visited on 2016-06-20).

A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Microservices Architecture En-
ables DevOps: Migration to a Cloud-Native Architecture”. In: IEEE Software
33.3 (May 2016), pages 42—52. ISSN: 0740-7459. DOL: 10.1109/MS.2016.64.

K. Beck and C. Andres. Extreme Programming Explained: Embrace Change.
Second Edition. Boston: Addison-Wesley, 2004. 1sBN: 978-0-321-27865-4.

S. Bohner and R. Arnold. Software Change Impact Analysis. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1996. 1sBN: 978-0-8186-7384-9.

G. Booch. Object Oriented Design: With Applications. The Benjamin/Cum-
mings Series in Ada and Software Engineering. Benjamin-Cummings Pub-
lishing Company, Subs of Addison Wesley Longman, Sept. 1990. 1sBN: 978-
0-8053-0091-8.

M. Brandtner, E. Giger, and H. Gall. “Supporting continuous integration by
mashing-up software quality information”. In: 2014 Software Evolution Week -

IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE). 2014, pages 184-193.

E. Brechner. Diamond Dependencies. June 2015. URL: https://blogs.msdn.
microsoft.com/eric_brechner/2015/06/30/diamond-dependencies/
(visited on 2016-06-27).

S.-C. Burca. Travis CI Build Statistics. 2014. URL: http://scribu.net/blog/
travis-ci-build-stats.html (visited on 2016-06-07).

Catch Software. JUnit Format. 2015. urRL: http: //help.catchsoftware.
com/display/ET/JUnit+Format (visited on 2016-05-24).

Circle CI. Announcing CircleCI Per-project Insights. 2016. URL: https: //cir
cleci.com/blog/announcing-circleci-per-project-insights/
(visited on 2016-06-28).

Circle CI Documentation. Collecting test metadata. Circle CI. 2016. urL: https:
//circleci.com/docs/test-metadata/| (visited on 2016-06-29).

111

https://buildtimetrend.github.io
https://buildtimetrend.github.io
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/android/app/AlarmManager.html
http://dx.doi.org/10.1109/MS.2016.64
https://blogs.msdn.microsoft.com/eric_brechner/2015/06/30/diamond-dependencies/
https://blogs.msdn.microsoft.com/eric_brechner/2015/06/30/diamond-dependencies/
http://scribu.net/blog/travis-ci-build-stats.html
http://scribu.net/blog/travis-ci-build-stats.html
http://help.catchsoftware.com/display/ET/JUnit+Format
http://help.catchsoftware.com/display/ET/JUnit+Format
https://circleci.com/blog/announcing-circleci-per-project-insights/
https://circleci.com/blog/announcing-circleci-per-project-insights/
https://circleci.com/docs/test-metadata/
https://circleci.com/docs/test-metadata/

References

[14]

[15]

[16]

[17]

[18]

[19]

[25]

[26]

[27]

[28]

Dictionary.com. Bleeding Edge. Dictionary.com, LLC. 2016. URL: http: //www.
dictionary.com/browse/bleeding-edge (visited on 2016-06-27).

Documentation Of The Python Standard Library. Datetime — Basic date and time
types. Python version: 2.7.12. Python Software Foundation. urL: https: //
docs.python.org/2/library/datetime.html (visited on 2016-06-26).

J. Donald. Improved Portability of Shared Libraries. Princeton, NJ 08544, USA,
Jan. 2003. urL: http://web.archive.org/web/20070926130800/http:
/ /www .princeton.edu/~jdonald/research/shared_1libraries/
cs518_report.pdf| (visited on 2016-06-27).

P. Edberg et al. Unicode Locale Data Markup Language. Unicode Technical
Standard 35. version: 29. The Unicode Consortium, Mar. 2016. URL: http :
/ /www .unicode.org/reports/tr35/tr35-43/tr35-dates. html
(visited on 2016-06-24).

C. Escoffier. Building pipelines by linking Jenkins jobs. Nov. 2011. URL: https :
//blog.akquinet.de/2011/11/09/building-pipelines-by-linking-
jenkins-jobs/| (visited on 2016-06-27).

M. Fowler. Continuous Integration. May 2006. URL: http : / /www . martin
fowler .com/articles/continuousIntegration . html(visited on
2016-06-27).

M. Fowler. Recurring Events for Calendars. May 1996. URL: http://martinfow
ler.com/apsupp/recurring.pdf|(visited on 2016-06-24).

S. Fuchs. Travis - an experimental, distributed CI server on Heroku. June 2010. URL:
http://svenfuchs.com/2010/6/16/travis-an-experimental -
distributed-ci-server-on-heroku (visited on 2016-06-24).

GitHub Press Resources. GitHub Inc. 2016. URL: https : / / github . com/
about/press (visited on 2016-06-27).

GoCD User Documentation. Managing dependencies. ThoughtWorks, Inc. 2016.
URL:|https://docs.go.cd/current/configuration/managing_
dependencies.html (visited on 2016-06-27).

E. Goldin. TeamCity Build Dependencies. JetBrains. Apr. 2012. URL: https :
/ /blog . jetbrains.com/teamcity /2012 /04 /teamcity-build-
dependencies-2/ (visited on 2016-06-27).

D. R. Hofstadter. Gédel, Escher, Bach: An Eternal Golden Braid. New York, NY,
USA: Basic Books, Inc., 1979. 1sBN: 978-0-465-02685-2.

T. Howard. JUnit-Schema. 2015. URL: https: //github.com/windyroad/
JUnit-Schema/blob/master/JUn1it.xsd|(visited on 2016-05-24).

Jenkins on Jenkins. Jenkins. 2016. urL: https://ci.jenkins.io/job/Core/
(visited on 2016-06-29).

Jenkins Wiki. Overview of the Build Pipeline Plugin for Jenkins. Jenkins. URL:
https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+
Plugin (visited on 2016-06-27).

112

http://www.dictionary.com/browse/bleeding-edge
http://www.dictionary.com/browse/bleeding-edge
https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/datetime.html
http://web.archive.org/web/20070926130800/http://www.princeton.edu/~jdonald/research/shared_libraries/cs518_report.pdf
http://web.archive.org/web/20070926130800/http://www.princeton.edu/~jdonald/research/shared_libraries/cs518_report.pdf
http://web.archive.org/web/20070926130800/http://www.princeton.edu/~jdonald/research/shared_libraries/cs518_report.pdf
http://www.unicode.org/reports/tr35/tr35-43/tr35-dates.html
http://www.unicode.org/reports/tr35/tr35-43/tr35-dates.html
https://blog.akquinet.de/2011/11/09/building-pipelines-by-linking-jenkins-jobs/
https://blog.akquinet.de/2011/11/09/building-pipelines-by-linking-jenkins-jobs/
https://blog.akquinet.de/2011/11/09/building-pipelines-by-linking-jenkins-jobs/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/apsupp/recurring.pdf
http://martinfowler.com/apsupp/recurring.pdf
http://svenfuchs.com/2010/6/16/travis-an-experimental-distributed-ci-server-on-heroku
http://svenfuchs.com/2010/6/16/travis-an-experimental-distributed-ci-server-on-heroku
https://github.com/about/press
https://github.com/about/press
https://docs.go.cd/current/configuration/managing_dependencies.html
https://docs.go.cd/current/configuration/managing_dependencies.html
https://blog.jetbrains.com/teamcity/2012/04/teamcity-build-dependencies-2/
https://blog.jetbrains.com/teamcity/2012/04/teamcity-build-dependencies-2/
https://blog.jetbrains.com/teamcity/2012/04/teamcity-build-dependencies-2/
https://github.com/windyroad/JUnit-Schema/blob/master/JUnit.xsd
https://github.com/windyroad/JUnit-Schema/blob/master/JUnit.xsd
https://ci.jenkins.io/job/Core/
https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

References

S. Judis. “Visualisierung und Analyse von Automated-Build-Data am
Beispiel von Travis CI”. German. Bachelor’s Thesis. Hochschule fiir Tech-
nik und Wirtschaft Berlin, 2013.

G. Klyne and C. Newman. Date and Time on the Internet: Timestamps. RFC
3339. Internet Request for Comments. Internet Engineering Task Force, July
2002. URL: https: / /www . ietf.org/rfc/rfc3339. txt|(visited on
2016-06-24).

M. Lipper. Ruby Temporal Expressions. urL: https://github.com/mlipper/
runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240 /README.
md| (visited on 2016-06-21).

M. Lipper. Temporal Expressions Tutorial. urL: https://github.com/mlip
per/runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240/doc/
tutorial_te.md|(visited on 2016-06-21).

R. C. Martin. “Java and C++: A Critical Comparison”. In: Java Gems. Edited
by D. Deugo. New York, NY, USA: Cambridge University Press, 1998,
pages 51-68. 1SBN: 978-0-521-64824-0.

A.-L. Mattila, T. Lehtonen, H. Terho, T. Mikkonen, and K. Systd. “Mashing
Up Software Issue Management, Development, and Usage Data”. In: Pro-
ceedings of the Second International Workshop on Rapid Continuous Software
Engineering. RCoSE “15. Florence, Italy: IEEE Press, 2015, pages 26—29.

M. Meyer. An Update on Infrastructure Changes. Dec. 2012. URL: https: / /
blog.travis-ci.com/2012-12-13-an-update-on-infrastructure-
changes|(visited on 2016-06-24).

Oxford Dictionaries. Dependence. Oxford University Press, 2016. URL: http :
/ /www.oxforddictionaries.com/definition/english/dependence
(visited on 2016-06-27).

J. Paredes, C. Anslow, and F. Maurer. “Information Visualization for Agile
Software Development”. In: 2014 Second IEEE Working Conference on Software
Visualization (VISSOFT). Sept. 2014, pages 157—166. por: 10.1109/VISSOFT.
2014.32.

M. Petre, E. de Quincey, et al. “A gentle overview of software visualisation”.
In: PPIG News Letter (2006), pages 1-10.

Ruby Documentation. Date. Ruby version: 1.9.3. Ruby Documentation Project.
URL: http://ruby-doc.org/stdlib-1.9.3/1libdoc/date/rdoc/Date.
html|(visited on 2016-06-26).

H. Schumann and W. Miiller. Visualisierung: Grundlagen und allgemeine Metho-
den. German. Springer Berlin Heidelberg, 1999. 1sBN: 978-3-540-64944-1.

D. Shakib, S. Sundararaman, D. Cornfield, S. Alam, and D. Whitney. Rep-
resenting recurring events. US Patent 5,813,013, Microsoft Corporation, Red-
mond, Wash. Sept. 1998.

113

https://www.ietf.org/rfc/rfc3339.txt
https://github.com/mlipper/runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240/README.md
https://github.com/mlipper/runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240/README.md
https://github.com/mlipper/runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240/README.md
https://github.com/mlipper/runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240/doc/tutorial_te.md
https://github.com/mlipper/runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240/doc/tutorial_te.md
https://github.com/mlipper/runt/blob/7ab3887581fa962ba04890fb21bc33871bc48240/doc/tutorial_te.md
https://blog.travis-ci.com/2012-12-13-an-update-on-infrastructure-changes
https://blog.travis-ci.com/2012-12-13-an-update-on-infrastructure-changes
https://blog.travis-ci.com/2012-12-13-an-update-on-infrastructure-changes
http://www.oxforddictionaries.com/definition/english/dependence
http://www.oxforddictionaries.com/definition/english/dependence
http://dx.doi.org/10.1109/VISSOFT.2014.32
http://dx.doi.org/10.1109/VISSOFT.2014.32
http://ruby-doc.org/stdlib-1.9.3/libdoc/date/rdoc/Date.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/date/rdoc/Date.html

References

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

TeamCity Documentation. Custom Chart. JetBrains. 2016. UrL: https: //con
fluence. jetbrains.com/display/TCD9/Custom+Chart|(visited on
2016-06-29).

J. Tellnes. “Dependencies: No Software is an Island”. Master’s thesis. Univer-
sity of Bergen, 2013.

The Open Group Base Specifications Issue 7, IEEE Std 1003.1. Crontab. The IEEE

and The Open Group. 2013. URL: http://pubs.opengroup.org/onlinepu
bs/9699919799/utilities/crontab.html (visited on 2016-06-24).

J. Thompson. Dependency Hell. May 2005. URL: https: //www . haiku-os.
org/documents/dev/dependency_hell (visited on 2016-06-27).

Travis Documentation. Customizing the Build. Travis CI GmbH. 2016. URL: http

s://docs.travis-ci.com/user/customizing-the-build/ (visited on

2016-06-24).

Travis Documentation. Languages. Travis CI GmbH. 2016. urL: https://docs.
travis-ci.com/user/languages/|(visited on 2016-07-05).

P. Vixie. FreeBSD File Formats Manual. Cron — daemon to execute scheduled com-
mands (Vixie Cron). The FreeBSD Project. June 2008. urL: https : / / www .
freebsd.org/cgi/man.cgi?cron(8) (visited on 2016-06-24).

P. Vixie. FreeBSD File Formats Manual. Crontab — tables for driving cron. The
FreeBSD Project. Apr. 2012. URL: https://www. freebsd.org/cgi/man.
cgi?crontab(5) (visited on 2016-06-24).

114

https://confluence.jetbrains.com/display/TCD9/Custom+Chart
https://confluence.jetbrains.com/display/TCD9/Custom+Chart
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
https://www.haiku-os.org/documents/dev/dependency_hell
https://www.haiku-os.org/documents/dev/dependency_hell
https://docs.travis-ci.com/user/customizing-the-build/
https://docs.travis-ci.com/user/customizing-the-build/
https://docs.travis-ci.com/user/languages/
https://docs.travis-ci.com/user/languages/
https://www.freebsd.org/cgi/man.cgi?cron(8)
https://www.freebsd.org/cgi/man.cgi?cron(8)
https://www.freebsd.org/cgi/man.cgi?crontab(5)
https://www.freebsd.org/cgi/man.cgi?crontab(5)

Band

107

106

105

104

103

102

101

100

99

98

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

ISBN

978-3-86956-373-2

978-3-86956-372-5

978-3-86956-360-2

978-3-86956-355-8

978-3-86956-348-0

978-3-86956-347-3

978-3-86956-346-6

978-3-86956-345-9

978-3-86956-339-8

978-3-86956-333-6

Titel

Extending a dynamic
programming language and

runtime environment with access

control

On the Operationalization of

Graph Queries with Generalized

Discrimination Networks

Proceedings of the Third HPI
Cloud Symposium
"Operating the Cloud" 2015

Tracing Algorithmic Primitives
in RSqueak/VM

Babelsberg/RML : executable
semantics and language testing
with RML

Proceedings of the Master
Seminar on Event Processing
Systems for Business Process
Management Systems

Exploratory Authoring of
Interactive Content in a Live
Environment

Proceedings of the 9th Ph.D.
retreat of the HPI Research
School on service-oriented
systems engineering

Efficient and scalable graph view
maintenance for deductive graph

databases based on generalized
discrimination networks

Inductive invariant checking

with partial negative application

conditions

Autoren / Redaktion

Philipp Tessenow, Tim
Felgentreff, Gilad Bracha,
Robert Hirschfeld

Thomas Beyhl, Dominique
Blouin, Holger Giese, Leen
Lambers

Estee van der Walt, Jan
Lindemann, Max Plauth,
David Bartok (Hrsg.)

Lars Wassermann, Tim
Felgentreff, Tobias Pape, Carl
Friedrich Bolz, Robert
Hirschfeld

Tim Felgentreff, Robert
Hirschfeld, Todd Millstein,
Alan Borning

Anne Baumgraf3, Andreas
Meyer, Mathias Weske (Hrsg.)

Philipp Otto, Jaqueline Pollak,
Daniel Werner, Felix Wolff,
Bastian Steinert, Lauritz
Thamsen, Macel Taeumel, Jens
Lincke, Robert Krahn, Daniel
H. H. Ingalls, Robert
Hirschfeld

Christoph Meinel, Hasso
Plattner, Jiirgen Doéllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch, Tobias
Friedrich (Hrsg.)

Thomas Beyhl, Holger Giese

Johannes Dyck, Holger Giese

ISBN 978-3-86956-377-0
ISSN 1613-5652

	Title
	Imprint

	Preface
	Contents
	1 Introduction
	2 The Architecture of Travis CI
	2.1 Introduction
	2.2 Background
	2.3 Approach
	2.4 Travis Implementation
	2.5 Evaluation
	2.6 Future Work and Conclusion

	3 Interfaces for Expressing Periodic Task Schedules
	3.1 Introduction
	3.2 Context
	3.3 Problem
	3.4 Approach
	3.5 Implementation
	3.6 Evaluation
	3.7 Related Work
	3.8 Conclusion

	4 Dependency Management for Hosted Continuous Integration Services
	4.1 Introduction
	4.2 Background
	4.3 Motivation
	4.4 Approach
	4.5 Implementation
	4.6 Evaluation
	4.7 Related Work
	4.8 Future Work
	4.9 Conclusion

	5 Visualizing Build Data in Continuous Integration Services
	5.1 Introduction
	5.2 State of the Art
	5.3 Problem
	5.4 Approach
	5.5 Implementation
	5.6 Evaluation
	5.7 Related Work
	5.8 Future Work
	5.9 Conclusion

	6 Conclusion
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

